Skip to main content
Log in

Possible Use of Satellite Geomagnetic Observations in Geological and Tectonic Studies of Lithosphere Structure

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Features that reflect parameters of the geological and tectonic structure in lithospheric magnetic anomalies obtained using measurements by the CHAMP Earth satellite. A database on full vector module Ta and vertical component Za of the lithosphere’s magnetic field at satellite altitudes is created using a original technology for separating an anomaly magnetic field from measurements made by the CHAMP satellite. The positions of large-scale anomalies over the territories of the eastern Carpathians, the Tarim large igneous province, the Khatanga trap plume and the Kolyma–Omolon microcontinent was determined. Data analysis on the magnetization of the lower crust structures in conjunction with other geophysical means allows us to identify conditions of the origin and evolution of the mantle and the mantle–crust ore-forming systems that result in the formation of large and unique ore deposits. It is shown that quantitative geological information can be derived from magnetic data by clarification of the boundaries position of Precambrian provinces covered by Phanerozoic sediments. As a parameter reflecting the actual positions of structures of the lower crust and their physical properties, the lithospheric magnetic field can be used to distinguish, contour and correct them in addition to other geological and geophysical means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Plume is a hot mantle flow ascending from the base of the Earth's mantle. The heat is carried upwards by the hot stream of the melt. Mantle plumes are believed to be responsible for the emergence of traps, intracontinental rifts and hot spots.

REFERENCES

  1. Abramova, D.Yu., Filippov, S.V., and Abramova, L.M., Longwave magnetic anomalies in Russia from Champ satellite measurements, Geofiz. Issled., 2009, vol. 10, no. 2, pp. 48–63.

    Google Scholar 

  2. Abramova, D.Yu., Abramova, L.M., Filippov, S.V., and Frunze, A.Kh., On the prospects of satellite data for the analysis of regional magnetic anomalies, Issled. Zemli Kosmosa, 2011, no. 6, pp. 1–11.

  3. Abramova, D.Yu., Filippov, S.V., Abramova, L.M., Varentsov, I.M., and Lozovskii, I.N., Changes of lithospheric magnetic anomalies with altitude (according to the CHAMP satellite), Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 2, pp. 239–248.

  4. Abramova, D.Yu., Abramova, L.M., Varentsov, I.M., and Filippov, S.V., Investigation of lithospheric magnetic anomalies of the ridge complex according to CHAMP satellite measurements, Geofiz. Issled., 2019, vol. 20, no. 2, pp. 5–18. https://doi.org/10.21455/gr2019.2-1

    Article  Google Scholar 

  5. Artemieva, I.M. and Mooney, W.D., Thermal thickness and evolution of Precambrian lithosphere: A global study, J. Geophys. Res.: Solid Earth, 2001, vol. 106, no. B8, pp. 16387–16414.

    Article  Google Scholar 

  6. Chen, Y., Roecker, S., and Kosarev, G., Elevation of the 410-km discontinuity beneath the central Tien Shan: Evidence for a detached lithospheric root, Geophys. Res. Lett., 1997, vol. 24, pp. 1531–1534.

    Article  Google Scholar 

  7. Commission for the Geological Map of the World (CGMW), Geological Map of the World, Paris: UNESCO, 2000.

    Google Scholar 

  8. Didenko, A.N., Kaplun, V.B., Malyshev, Yu.F., and Shevchenko, B.F., Lithospheric structure and Mesozoic geodynamics of the eastern Central Asian orogen, Russ. Geol. Geophys., 2010, vol. 51, no. 5, pp. 492–506.

    Article  Google Scholar 

  9. Dobretsov, N.L., Geological implications of the thermochemical plume model, Russ. Geol. Geophys., 2008, vol. 49, no. 7, pp. 441–454.

    Article  Google Scholar 

  10. Dobretsov, N.L., Borisenko, A.S., Izoh, A.E., and Zhmodik, S.M., A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 903–924.

    Article  Google Scholar 

  11. Fan, G., Wallace, T.C., and Zhao, D., Tomographic imaging of deep velocity structure beneath the eastern and southern Carpathians, Romania: Implications for continental collision, J. Geophys. Res., 1998, vol. 103, pp. 2705–2723.

    Article  Google Scholar 

  12. Gao, R., Huang, D., and Lu, D., Deep seismic reflection profile across the juncture zone between the Tarim basin and the west Kunlun mountains, Chin. Sci. Bull., 2000, vol. 45, pp. 2281–2286.

    Article  Google Scholar 

  13. Ghose, S., Hamburger, W., and Virieux, J., Three-dimensional velocity structure and earthquake locations beneath the northern Tian Shan of Kyrgyzstan, Central Asia, J. Geophys. Res., 1998, vol. 103, pp. 2725–2748.

    Article  Google Scholar 

  14. Girbacea, R. and Frisch, W., Slab in the wrong place: Lower lithospheric mantle delamination in the last stage of the Eastern Carpathian subduction retreat, Geology, 1998, vol. 26, pp. 611–614.

    Article  Google Scholar 

  15. Goodwin, A.M., Principles of Precambrian Geology, New York: Elsevier, 1996.

    Google Scholar 

  16. Gvirtzman, Z., Partial detachment of a lithospheric root under the southeast Carpathians: Toward a better definition of the detachment concept, Geology, 2002, vol. 30, pp. 51–54.

    Article  Google Scholar 

  17. Hemant, K. and Maus, S., Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique, J. Geophys. Res., 2005, vol. 110, pp. 1–23.

    Google Scholar 

  18. Hemant, K., Maus, S., and Haak, V., Interpretation of champ crustal field anomaly maps using a geographical information system (GIS) technique, in Earth Observation with CHAMP: Results from Three Years in Orbit, 2005, pp. 249–254.

  19. Howell, D.G. and Wiley, T.J., Crustal evolution of northern Alaska inferred from sedimentology and structural relations of the Kandik area, Tectonics, 1987, vol. 6, pp. 619– 631.

    Article  Google Scholar 

  20. Huang, J. and Zhao, D., High-resolution mantle tomography of China and surrounding regions, J. Geophys. Res., 2006, vol. 111, pp. 1–21.

    Google Scholar 

  21. Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, N., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R.R.B., Gaina, C., Golynsky, S., Kucks, R., Lühr, H., Milligan, P., Mogren, S., Müller, R.D., Olesen, O., Pilkington, M., Saltus, R., Schreckenberger, B., Thébault, E., and Caratori Tontini, F., EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements, Geochem. Geophys. Geosyst., 2009, vol. 10, no. 8, Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  22. Matenco, L. and Bertotti, G., Tertiary tectonic evolution of the external east Carpathians (Romania), Tectonophysics, 2000, vol. 316, pp. 255–286.

    Article  Google Scholar 

  23. Milovsky, G.A., Ishmukhametova, V.T., and Shemyakina, E.M., Application of remote-sensing observations for detecting patterns of localization of Cu–Ni mineralization of the Norilsk ore region, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 1101–1111.

    Article  Google Scholar 

  24. Milovsky, G.A., Orlyankin, V.N., Ishmukhametova, V.T., and Nenadov, Ya.V., Prospects of oil and gas potential of the Lena-Anabar deflection and Olenek dislocation zone according to space and magneto-gravimetric data, Issled. Zemli Kosmosa, 2013, no. 1, pp. 28–34.

  25. Nurgaliev, D.K., Ravilova, N.N., and Schukin, Yu.K., Changing geological environment: Spatiotemporal interactions of endogenous and exogenous processes, Geofiz. Vestn., 2008, no. 3, pp. 5–10.

  26. Pirajno, F., Ore Deposits and Mantle Plumes, Kluwer, 2004.

    Google Scholar 

  27. Reigber, C., Lühr, H., and Schwintzer, P., CHAMP mission status, Adv. Space Res., 2002, vol. 30, no. 2, pp. 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4

    Article  Google Scholar 

  28. Tanaka, A., Okubo, Y., and Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics, 1999, vol. 306, pp. 461–470.

    Article  Google Scholar 

  29. Wessel, P. and Smith, W.H.F., The generic mapping tools, Technical reference and cookbook version 4.2, 2007. http://gmt.soest.hawaii.edu.

  30. Wortel, M.J.R. and Spakman, W., Subduction and slab detachment the Mediterranean–Carpathian region, Science, 2000, vol. 290, no. 5498, pp. 1910–1917.

    Article  Google Scholar 

  31. Yanovskaya, T.B. and Lyskova, E.L., The velocity structure of the upper mantle of Europe from the ambient noise surface wave tomography, Izv., Phys. Solid Earth, 2013, vol. 49, no. 5, pp. 601–609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Abramova.

Additional information

Translated by M. Hannibal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, D.Y., Filippov, S.V. & Abramova, L.M. Possible Use of Satellite Geomagnetic Observations in Geological and Tectonic Studies of Lithosphere Structure. Izv. Atmos. Ocean. Phys. 56, 1695–1704 (2020). https://doi.org/10.1134/S0001433820120324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820120324

Keywords:

Navigation