Skip to main content
Log in

Study of the Variability of Spring Breakup Dates and Arctic Stratospheric Polar Vortex Parameters from Simulation and Reanalysis Data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Five 50-year simulations for the 5th version of the climate model of the Marchuk Institute of Numerical Mathematics, Russian Academy of Science (INM RAS), are used to analyze the interannual variability of Arctic stratospheric polar vortex and dates of spring breakup events (springtime transition) in comparison with reanalysis data. Early spring breakup events are accompanied by stronger wave activity in comparison with late ones. Winter seasons with the maximal air volume in the polar stratosphere and conditions sufficient for the formation of polar stratospheric clouds are characterized by relatively early spring breakup events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. Pedatella, J. Chau, H. Schmidt, L. Goncharenko, C. Stolle, K. Hocke, V. Harvey, B. Funke, and T. Siddiqui, “How sudden stratospheric warming affects the whole atmosphere,” Trans., Am. Geophys. Union 99 (2018).

  2. M. Baldwin and T. Dunkerton, “Stratospheric harbingers of anomalous weather regimes,” Science 294, 581–584 (2001).

    Article  Google Scholar 

  3. E. Kolstad, T. Breiteig, and A. Scaife, “The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere,” Q. J. R. Meteorol. Soc 136, 886–893 (2010).

    Article  Google Scholar 

  4. L. Tomassini, E. Gerber, M. Baldwin, F. Bunzel, and M. Giorgetta, “The role of stratosphere-Troposphere coupling in the occurrence of extreme winter cold spells over Northern Europe,” J. Adv. Modeling Earth Syst. 4, A03 (2012).

    Google Scholar 

  5. D. Nath, W. Chen, C. Zelin, A. Pogoreltsev, and K. Wei, “Dynamics of 2013 sudden stratospheric warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection,” Sci. Rep. 6, 24174 (2016).

    Article  Google Scholar 

  6. G. Manney, M. Santee, M. Rex, N. Livesey, M. Pitts, P. Veefkind, E. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. Poole, M. Schoeberl, D. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. Levelt, A. Makshtas, C. McElroy, H. Nakajima, M. Parrondo, D. Tarasick, P. Gathen, K. Walker, and N. Zinoviev, “Unprecedented Arctic ozone loss in 2011,” Nature 478, 469–475 (2011).

    Article  Google Scholar 

  7. U. Langematz, S. Meul, K. Grunow, E. Romanowsky, S. Oberlander, J. Abalichin, and A. Kubin, “Future Arctic temperature and ozone: The role of stratospheric composition changes,” J. Geophys. Res. 119, 2092–2112 (2014).

    Article  Google Scholar 

  8. A. Karpechko, L. Backman, L. Tholix, I. Ialongo, M. Andersson, V. Fioletov, A. Heikkila, B. Johnsen, T. Koskela, E. Kyrola, K. Lakkala, C. Myhre, M. Rex, V. Sofieva, J. Tamminen, and I. Wohltmann, “The link between springtime total ozone and summer UV radiation in Northern Hemisphere extratropics,” J. Geophys. Res. 118, 8649–8661 (2013).

    Article  Google Scholar 

  9. F. Khosrawi, O. Kirner, B-M. Sinnhuber, S. Johansson, M. Hopfner, M. Santee, L. Froidevaux, J. Ungermann, R. Ruhnke, W. Woiwode, H. Oelhaf, and P. Braesicke, “Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter,” Atmos. Chem. Phys. 17, 12893–12910 (2017).

    Article  Google Scholar 

  10. N. Calvo, L. Polvani, and S. Solomon, “On the surface impact of Arctic stratospheric ozone extremes,” Environ. Res. Lett 10, 094003 (2015).

    Article  Google Scholar 

  11. P. N. Vargin, M. P. Nikiforova, and A. M. Zvyagintsev, “Variability of the Antarctic ozone anomaly in 2011–2018,” Russ. Meteorol. Hydrol. 45, 63–73 (2020).

    Article  Google Scholar 

  12. R. X. Black and B. A. McDaniel, “The dynamics of Northern Hemisphere stratospheric final warming events,” J. Atmos. Sci. 64, 2932–2946 (2007).

    Article  Google Scholar 

  13. D. W. Waugh, W. J. Randel, S. Pawson, P. A. Newman, and E. R. Nash, “Persistence of the lower stratospheric polar vortices,” J. Geophys. Res. 104, 27191–27201 (1999).

    Article  Google Scholar 

  14. M. Salby and P. Callaghan, “Influence of planetary wave activity on the stratospheric final warming and spring ozone,” J. Geophys. Res. 112, D20111 (2007).

    Article  Google Scholar 

  15. D. Cayan, S. Kammerdiener, M. Dettinger, J. Caprio, and D. Peterson, “Changes in the onset of spring in the Western United States,” Bull. Am. Meteorol. Soc. 82 (3), 399–415 (2001).

    Article  Google Scholar 

  16. B. Ayarzagüena and E. Serrano, “Monthly characterization of the tropospheric Circulation over the Euro-Atlantic area in relation with the timing of stratospheric Final warming,” J. Clim. 22, 6313–6324 (2009).

    Article  Google Scholar 

  17. S. Hardiman, N. Butchart, A. Charlton-Perez, T. Shaw, H. Akiyoshi, A. Baumgaertner, S. Bekki, P. Braesicke, M. Chipperfield, M. Dameris, R. Garcia, M. Michou, S. Pawson, E. Rozanov, and K. Shibata, “Improved predictability of the troposphere using stratospheric final warmings,” J. Geophys. Res. 116, D18113 (2011).

    Article  Google Scholar 

  18. E. N. Savenkova, A. Yu. Kanukhina, A. I. Pogoreltsev, and E. G. Merzlyakov, “Variability of the springtime transition date and planetary waves in the stratosphere,” J. Atmos. Sol.-Terr. Phys. 90-91, 1–8 (2012).

    Article  Google Scholar 

  19. R. Thieblemont, B. Ayarzagüena, K. Matthes, S. Bekki, J. Abalichin, and U. Langematz, “Drivers and surface signal of inter-annual variability of boreal stratospheric final warmings,” J. Geophys. Res. 124 (11), 5400–5417 (2019).

    Article  Google Scholar 

  20. G. Manney, N. Livesey, C. Jimenez, H. Pumphrey, M. Santee, I. MacKenzie, and J. Waters, “EOS microwave limb sounder observations of “frozen-in” anticyclonic air in Arctic summer,” Geophys. Res. Lett. 33, L06810 (2006).

    Google Scholar 

  21. R. Thieblemont, Y. Orsolini, A. Hauchecorne, M.‑A. Drouin, and N. Huret, “A climatology of frozen-in anticyclones in the spring Arctic stratosphere over the period 1960–2011,” J. Geophys. Res. 118, 1299–1311 (2013).

    Article  Google Scholar 

  22. A. Butler, A. Charlton-Perez, D. Domeisen, I. Simpson, and J. Sjoberg, “Predictability of Northern Hemisphere final stratospheric warmings and their surface impacts,” Geophys. Res. Lett. 46 (17–18), 10578–10588 (2019).

    Article  Google Scholar 

  23. Ozone. WMO Report No.55. Scientific Assessment of Ozone Depletion. 2018 (WMO, 2018).

  24. M. Rex, R. Salawitch, P. Gathen, N. Harris, M. Chipperfield, and B. Naujokat, “Arctic ozone loss and climate change,” Geophys. Res. Lett. 31, L04116 (2004).

    Article  Google Scholar 

  25. S. P. Smyshlyaev, A. I. Pogorel’tsev, V. Ya. Galin, and E. A. Drobashevskaya, “Influence of wave activity on the composition of the polar stratosphere,” Geomagn. Aeron. 56 (1), 102–116 (2016).

    Article  Google Scholar 

  26. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykosov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, and N. G. Yakovlev, “Simulation of modern climate with the new version of the INM RAS climate model,” Izv., Atmos. Oceanic Phys. 53, 142–155 (2017).

    Article  Google Scholar 

  27. E. M. Volodin and S. V. Kostrykin, “The aerosol module in the INM RAS climate model,” Russ. Meteorol. Hydrol. 41 (8), 519–528 (2016).

    Article  Google Scholar 

  28. P. N. Vargin and E. M. Volodin, “Analysis of the reproduction of dynamic processes in the stratosphere using the climate model of the Institute of Numerical Mathematics, Russian Academy of Sciences,” Izv., Atmos. Oceanic Phys. 52, 1–15 (2016).

    Article  Google Scholar 

  29. P. N. Vargin, S. V. Kostrykin, and E. M. Volodin, “Analysis of simulation of stratosphere-troposphere dynamical coupling with the INM-CM5 climate model,” Russ. Meteorol. Hydrol. 43, 780–786 (2018).

    Article  Google Scholar 

  30. B. Ayarzagüena, A. Charlton-Perez, A. Butler, P. Hitchcock, I. Simpson, L. Polvani, N. Butchart, E. Gerber, L. Gray, B. Hassler, P. Lin, F. Lott, E. Manzini, R. Mizuta, C. Orbe, S. Osprey, D. Saint-Martin, M. Sigmond, M. Taguchi, E. Volodin, and S. Watanabe, “Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models,” J. Geophys. Res.: Atmos. 125 (6), e2019JD032345 (2020).

  31. Z. Lawrence, G. Manney, and K. Wargan, “Reanalysis intercomparisons of stratospheric polar processing diagnostics,” Atmos. Chem. Phys. 18, 13547–13579 (2018).

    Article  Google Scholar 

  32. K. Wei, W. Chen, and R. Huang, “Dynamical diagnosis of the breakup of the stratospheric polar vortex in the Northern Hemisphere,” Sci. China, Ser. D: Earth Sci. 50 (9), 1369–1379 (2007).

    Article  Google Scholar 

  33. A. A. Pogoreltsev, E. Savenkova, O. Aniskina, T. Ermakova, W. Chen, and K. Wei, “Interannual and intraseasonal variability of stratospheric dynamics and stratosphere–troposphere coupling during Northern winter,” J. Atmos. Sol.-Terr. Phys., 136, 187–200 (2015).

    Article  Google Scholar 

  34. E. V. Rakushina, T. S. Ermakova, and A. I. Pogoreltsev, “Changes in the zonal mean flow, temperature, and planetary waves observed in the Northern Hemisphere mid-winter months during the last decades,” J. Atmos. Sol.-Terr. Phys 171, 234–240 (2018).

    Article  Google Scholar 

  35. K. K. Kandieva, O. G. Aniskina, A. I. Pogoreltsev, O. S. Zorkaltseva, and V. I. Mordvinov, “Effect of the Madden–Julian oscillation and quasi-biennial oscillation on the dynamics of extratropical stratosphere,” Geomagn. Aeron. 59 (1), 105–114 (2019).

    Article  Google Scholar 

  36. Z. Lawrence, G. Manney, K. Minschwaner, M. Santee, and A. Lambert, “Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses,” Atmos. Chem. Phys. 15, 3873–3892 (2015).

    Article  Google Scholar 

  37. V. V. Vorobyeva and E. M. Volodin, “Investigation of the structure and predictability of the first mode of stratospheric variability based on the INM RAS climate Model,” Russ. Meteorol. Hydrol. 43, 737–742 (2018).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-05-00370). The study of the effect of global processes on the Arctic stratosphere was partially supported by the Russian Science Foundation (grant no. 19-17-00198).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. N. Vargin, S. V. Kostrykin, E. V. Rakushina, E. M. Volodin or A. I. Pogoreltsev.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargin, P.N., Kostrykin, S.V., Rakushina, E.V. et al. Study of the Variability of Spring Breakup Dates and Arctic Stratospheric Polar Vortex Parameters from Simulation and Reanalysis Data. Izv. Atmos. Ocean. Phys. 56, 458–469 (2020). https://doi.org/10.1134/S0001433820050114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820050114

Keywords:

Navigation