Skip to main content
Log in

Studies of Planetary Atmospheres in Russia (2015–2018)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A review of the results of planetary atmospheres studies performed by Russian scientists in 2015–2018 prepared in the Commission on planetary atmospheres of the National Geophysical Committee for the National Report on Meteorology and Atmospheric Sciences to the XXVII General Assembly of the International Union of Geodesy and Geophysics (Montreal, June 8–18, 2019) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. I. Mokhov, “Russian atmospheric and meteorological research in 2015–2018,” Izv., Atmos. Ocean. Phys. 55 (6), 503–504 (2019).

    Article  Google Scholar 

  2. O. I. Korablev, “Studies of planetary atmospheres in Russia (2011–2014),” Izv., Atmos. Ocean. Phys. 52 (5), 483–496 (2016).

    Article  Google Scholar 

  3. B. Bézard, C. T. Russell, T. Satoh, S. E. Smrekar, and C. F. Wilson, “Editorial: topical collection on Venus,” Space Sci. Rev. 214, 128–131 (2018). https://doi.org/10.1007/s11214-018-0564-8

    Article  Google Scholar 

  4. A. C. Vandaele et al., “Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability,” Icarus 295, 16–33 (2017). https://doi.org/10.1016/j.icarus.2017.05.003

    Article  Google Scholar 

  5. A. C. Vandaele et al., “Sulfur dioxide in the Venus atmosphere: II. Spatial and temporal variability,” Icarus 295, 1–15 (2017). https://doi.org/10.1016/j.icarus.2017.05.001

    Article  Google Scholar 

  6. D. A. Belyaev, D. G. Evdokimova, F. Montmessin, J. L. Bertaux, O. I. Korablev, A. A. Fedorova, E. Marcq, L. Soret, and M. S. Luginin, “Night side distribution of SO2 content in Venus’ upper mesosphere,” Icarus 294, 58–71 (2017). https://doi.org/10.1016/j.icarus.2017.05.002

    Article  Google Scholar 

  7. A. Fedorova, E. Marcq, M. Luginin, O. Korablev, J.‑L. Bertaux, and F. Montmessin, “Variations of water vapor and cloud top altitude in the Venus’ mesosphere from SPICAV/VEx observations,” Icarus 275, 143–162 (2016).

    Article  Google Scholar 

  8. V. Cottini, N. I. Ignatiev, G. Piccioni, and P. Drossart, “Water vapor near Venus cloud tops from VIRTIS-H/Venus express observations 2006–2011,” Planet. Space Sci. 113, 219–225 (2015).

    Article  Google Scholar 

  9. V. Krasnopolsky and J. Pollack, “H2O–H2SO4 system in Venus clouds and OCS, CO, and H2SO4 profiles in Venus troposphere,” Icarus 109, 58–78 (1994). https://doi.org/10.1006/icar.1994.1077

    Article  Google Scholar 

  10. V. A. Krasnopolsky, “Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45–75 km on Venus,” Icarus 252, 327–333 (2015).

    Article  Google Scholar 

  11. V. A. Krasnopolsky, “A photochemical model for the Venus atmosphere at 47–112 km,” Icarus 218, 230–246 (2012).

    Article  Google Scholar 

  12. V. A. Krasnopolsky, “Disulfur dioxide and its near-UV absorption in the photochemical model of Venus atmosphere,” Icarus 299, 294–299 (2018). https://doi.org/10.1016/j.icarus.2017.08.013

    Article  Google Scholar 

  13. V. A. Krasnopolsky and D. A. Belyaev, “Search for HBr and bromine photochemistry on Venus,” Icarus 293, 114–118 (2017). https://doi.org/10.1016/j.icarus.2017.04.016

    Article  Google Scholar 

  14. E. V. Petrova, “Glory on Venus and selection among the unknown UV absorbers,” Icarus 306, 163–170 (2018). https://doi.org/10.1016/j.icarus.2018.02.016

    Article  Google Scholar 

  15. W. J. Markiewicz, E. V. Petrova, and O. S. Shalygina, “Aerosol properties in the upper clouds of Venus from glory observations by the Venus Monitoring Camera (Venus Express mission),” Icarus 299, 272–293 (2018). https://doi.org/10.1016/j.icarus.2017.08.011

    Article  Google Scholar 

  16. E. V. Petrova, O. S. Shalygina, and W. J. Markiewicz, “The VMC/VEx photometry at small phase angles: Glory and the physical properties of particles in the upper cloud layer of Venus,” Planet. Space Sci. 113, 120–134 (2015).

    Article  Google Scholar 

  17. O. S. Shalygina, E. V. Petrova, W. J. Markiewicz, N. I. Ignatiev, and E. V. Shalygin, “Optical properties of the Venus upper clouds from the data obtained by Venus Monitoring Camera on-board the Venus Express,” Planet. Space Sci. 113, 135–158 (2015).

    Article  Google Scholar 

  18. E. V. Petrova, O. S. Shalygina, and W. J. Markiewicz, “UV contrasts and microphysical properties of the upper clouds of Venus from the UV and NIR VMC/VEx images,” Icarus 260, 190–204 (2015).

    Article  Google Scholar 

  19. L. Rossi, E. Marcq, F. Montmessin, A. Fedorova, D. Stam, J. -L. Bertaux, and O. Korablev, “Preliminary study of Venus cloud layers with polarimetric data from SPICAV/VEx,” Planet. Space Sci. 113, 159–168 (2015).

    Article  Google Scholar 

  20. V. A. Krasnopolsky, “On the iron chloride aerosol in the clouds of Venus,” Icarus 286, 134–137 (2017). https://doi.org/10.1016/j.icarus.2016.10.00

    Article  Google Scholar 

  21. V. A. Krasnopolsky, “Sulfur aerosol in the clouds of Venus,” Icarus 274, 33–36 (2016).

    Article  Google Scholar 

  22. V. A. Krasnopolsky, “S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus,” Icarus 225, 570–580 (2013).

    Article  Google Scholar 

  23. Y. J. Lee, D. V. Titov, N. I. Ignatiev, S. Tellmann, M. Pätzold, and G. Piccioni, “The radiative forcing variability caused by the changes of the upper cloud vertical structure in the Venus mesosphere,” Planet. Space Sci. 113, 298–308 (2015).

    Article  Google Scholar 

  24. M. Luginin, A. Fedorova, D. Belyaev, F. Montmessin, V. Wilquet, O. Korablev, J. -L. Bertaux, and A. C. Vandaele, “Aerosol properties in the upper haze of Venus from SPICAV IR data,” Icarus 277, 154–170 (2016).

    Article  Google Scholar 

  25. M. Luginin, A. Fedorova, D. Belyaev, F. Montmessin, O. Korablev, and J. -L. Bertaux, “Scale heights and detached haze layers in the mesosphere of Venus from SPICAV IR data,” Icarus 311, 87–104 (2018).

    Article  Google Scholar 

  26. L. W. Esposito, “Sulfur dioxide – Episodic injection shows evidence for active Venus volcanism,” Science 223, 1072–1074 (1984).

    Article  Google Scholar 

  27. D. V. Titov, N. I. Ignatiev, K. McGouldrick, V. Wilquet, and C. F. Wilson, “Clouds and hazes of Venus,” Space Sci. Rev. 214, 126–187 (2018). https://doi.org/10.1007/s11214-018-0552-z

    Article  Google Scholar 

  28. A. Piccialli, F. Montmessin, D. Belyaev, A. Mahieux, A. Fedorova, E. Marcq, J. -L. Bertaux, S. Tellmann, A. C. Vandaele, and O. Korablev, “Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express,” Planet. Space Sci. 113, 321–335 (2015).

    Article  Google Scholar 

  29. S. S. Limaye et al., “The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles,” Icarus 294, 124–155 (2017).

    Article  Google Scholar 

  30. A. C. Vandaele et al., “Contribution from SOIR/VEX to the updated Venus International Reference Atmosphere (VIRA),” Adv. Space Res. 57, 443–458 (2016).

    Article  Google Scholar 

  31. A. Fedorova, B. Bézard, J. -L. Bertaux, O. Korablev, and C. Wilson, “The CO2 continuum absorption in the 1.10- and 1.18-μm windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus express,” Planet. Space Sci. 113, 66–77 (2015).

    Article  Google Scholar 

  32. N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, and E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres,” Comput. Math. Math. Phys. 55, 1713–1726 (2015).

    Article  Google Scholar 

  33. D. Mondelain, A. Campargue, P. Cermak, R. R. Gamache, S. Kassi, S. A. Tashkun, and H. Tran, “The CO2 absorption continuum by high pressure CRDS in the 1.74 µm window,” J. Quant. Spectrosc. Radiat. Transfer 203, 530–537 (2017). https://doi.org/10.1016/j.jqsrt.2017.02.019

    Article  Google Scholar 

  34. S. Vasilchenko, M. Konefal, D. Mondelain, S. Kassi, P. Čermák, S. A. Tashkun, V. I. Perevalov, and A. Campargue, “The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (I) Rovibrational lines,” J. Quant. Spectrosc. Radiat. Transfer 184, 233–240 (2016).

    Article  Google Scholar 

  35. R. R. Gamache et al., “Total internal partition sums for 166 isotopologues of 51 molecules important in planetary atmospheres: application to HITRAN2016 and beyond,” J. Quant. Spectrosc. Radiat. Transfer 203, 70–87 (2017).

    Article  Google Scholar 

  36. N. N. Lavrentieva, B. A. Voronin, and A. A. Fedorova, “H216O line list for the study of atmospheres of Venus and Mars,” Opt. Spectrosc. 118, 11–18 (2015).

    Article  Google Scholar 

  37. I. E. Gordon et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  Google Scholar 

  38. S. A. Tashkun, V. I. Perevalov, R. R. Gamache, and J. Lamouroux, “CDSD-296, high-resolution carbon dioxide spectroscopic databank: an update,” J. Quant. Spectrosc. Radiat. Transfer 228, 124–131 (2019).

    Article  Google Scholar 

  39. I. V. Khatuntsev, M. V. Patsaeva, D. V. Titov, N. I. Ignatiev, A. V. Turin, S. S. Limaye, W. J. Markiewicz, M. Almeida, T. Roatsch, and R. Moissl, “Cloud level winds from the Venus Express Monitoring Camera imaging,” Icarus 226, 140–158 (2013).

    Article  Google Scholar 

  40. M. V. Patsaeva, I. V. Khatuntsev, D. V. Patsaev, D. V. Titov, N. I. Ignatiev, W. J. Markiewicz, and A. V. Rodin, “The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express,” Planet. Space Sci. 113, 100–108 (2015).

    Article  Google Scholar 

  41. I. V. Khatuntsev, M. V. Patsaeva, D. V. Titov, N. I. Ignatiev, A. V. Turin, A. A. Fedorova, and W. J. Markiewicz, “Winds in the middle cloud deck from the near-IR imaging by the Venus Monitoring Camera onboard Venus Express,” J. Geophys. Res. 122, 2312–2327 (2017). https://doi.org/10.1002/2017je005355

    Article  Google Scholar 

  42. J.-L. Bertaux, I. V. Khatuntsev, A. Hauchecorne, W. J. Markiewicz, E. Marcq, S. Lebonnois, M. Patsaeva, A. Turin, and A. Fedorova, “Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves,” J. Geophys. Res. 121, 1087–1101 (2016).

    Article  Google Scholar 

  43. D. A. Gorinov, I. V. Khatuntsev, L. V. Zasova, A. V. Turin, and G. Piccioni, “Circulation of Venusian atmosphere at 90–110 km based on apparent motions of the O2 1.27 μm nightglow from VIRTIS-M (Venus Express) Data,” Geophys. Res. Lett. 45, 2554–2562 (2018). https://doi.org/10.1002/2017GL076380

    Article  Google Scholar 

  44. I. V. Mingalev, A. V. Rodin, and K. G. Orlov, “Numerical simulations of the global circulation of the atmosphere of Venus: Effects of surface relief and solar radiation heating,” Sol. Syst. Res. 49 (1), 24–42 (2018).

    Article  Google Scholar 

  45. D. J. Cirilo-Lombardo, M. Mayochi, F. O. Minotti, and C. D. Vigh, “About superrotation in Venus,” Sol. Syst. Res. 52, 223–233 (2018).

    Article  Google Scholar 

  46. M. N. Izakov, “Turbulence, superrotation, and general circulation models of the atmosphere of Venus,” Sol. Syst. Res. 50 (5), 301–315 (2018).

    Article  Google Scholar 

  47. A. P. Ekonomov and L. V. Ksanfomality, “On the thermal protection systems of landers for Venus exploration,” Sol. Syst. Res. 52 (1), 37–43 (2018).

    Article  Google Scholar 

  48. A. P. Ekonomov, “Resolving the surface details on Venus in the balloon- or lander-borne images with a computer modeling method,” Sol. Syst. Res. 49 (2), 110–113 (2015).

    Article  Google Scholar 

  49. L. S. Glaze, C. F. Wilson, L. V. Zasova, M. Nakamura, and S. Limaye, “Future of Venus research and exploration,” Space Sci. Rev. 214 (5), 89 (2018).

    Article  Google Scholar 

  50. A. Trokhimovskiy, A. Fedorova, O. Korablev, F. Montmessin, J. -L. Bertaux, A. Rodin, and M. D. Smith, “Mars’ water vapor mapping by the SPICAM IR spectrometer: Five Martian years of observations,” Icarus 251, 50–64 (2014). https://doi.org/10.1016/j.icarus.2014.10.007

    Article  Google Scholar 

  51. S. Guslyakova, A. Fedorova, F. Lefèvre, O. Korablev, F. Montmessin, A. Trokhimovskiy, and J. L. Bertaux, “Long-term nadir observations of the O2 dayglow by SPICAM IR,” Planet. Space Sci. 1 (2015). https://doi.org/10.1016/j.pss.2015.12.006

  52. F. Montmessin, et al., “SPICAM on Mars Express: a 10-year in-depth survey of the Martian atmosphere,” Icarus 297, 195–216 (2017). https://doi.org/10.1016/j.icarus.2017.06.022

    Article  Google Scholar 

  53. Yu. N. Kulikov, “Modeling of chemical composition of the Martian atmosphere. Preliminary results of comparing the atomic oxygen height profile to the SPICAM spectrometer measurement data,” Tr. Kol’sk. Nauchn. Tsentra RAN (Geofiz.). 9 (4–5–4), 202–216 (2018). https://doi.org/10.25702/KSC.2307-5252.2018.9.5.202-216

  54. V. A. Krasnopolsky, “Variations of carbon monoxide in the Martian lower atmosphere,” Icarus 253, 149–155 (2015).

    Article  Google Scholar 

  55. G. M. Shved, “On the abundances of carbon dioxide isotopologues in the atmospheres of Mars and Earth,” Sol. Syst. Res. 50 (2), 161–164 (2016).

    Article  Google Scholar 

  56. V. A. Krasnopolsky, “Annual mean mixing ratios of N-2, Ar, O-2, and CO in the Martian atmosphere,” Planet. Space Sci. 144, 71–73 (2017). https://doi.org/10.1016/j.pss.2017.05.009

    Article  Google Scholar 

  57. F. Lefèvre, V. Krasnopolsky, R. T. Clancy, F. Forget, M. D. Smith, and R. W. Zurek, “Atmospheric photochemistry,” in The Atmosphere and Climate of Mars, Ed. by R. M. Haberle (Cambridge Univ. Press, Cambridge, 2017), pp. 374–404.

    Google Scholar 

  58. F. Montmessin, M. D. Smith, Y. Langevin, M. T. Mellon, A. Fedorova, R. M. Haberle, R. T. Clancy, F. Forget, M. D. Smith, and R. W. Zurek, “The water cycle,” in The Atmosphere and Climate of Mars, Ed. by R. M. Haberle (Cambridge Univ. Press, Cambridge, 2017), pp. 338–373.

    Google Scholar 

  59. D. S. Shaposhnikov, A. V. Rodin, and A. S. Medvedev, “The water cycle in the general circulation model of the Martian atmosphere,” Sol. Syst. Res. 50 (2), 90–101 (2016).

    Article  Google Scholar 

  60. D. S. Shaposhnikov, A. V. Rodin, A. S. Medvedev, A. A. Fedorova, T. Kuroda, and P. Hartogh, “Modeling the hydrological cycle in the atmosphere of Mars: influence of a bimodal size distribution of aerosol nucleation particles,” J. Geophys. Res.: Planets 123, 508–526 (2018). https://doi.org/10.1002/2017je005384

    Article  Google Scholar 

  61. V. A. Krasnopolsky, “On the hydrogen escape from Mars: Comments to “Variability of the hydrogen in the martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling” by J.Y. Chaufray et al. (2015, Icarus 245, 282–294),” Icarus 281, 262–263 (2017).

    Article  Google Scholar 

  62. A. Fedorova, J. -L. Bertaux, D. Betsis, F. Montmessin, O. Korablev, L. Maltagliati, and J. Clarke, “Water vapor in the middle atmosphere of Mars during the 2007 global dust storm,” Icarus 300, 440–457 (2018). https://doi.org/10.1016/j.icarus.2017.09.025

    Article  Google Scholar 

  63. V. I. Shematovich and M. Ya. Marov, “Nonthermal dissipation of the Martian neutral upper atmosphere,” Dokl. Phys. 60 (4), 188–191 (2015).

    Article  Google Scholar 

  64. V. I. Shematovich and M. Ya. Marov, “Escape of planetary atmospheres: physical processes and numerical models,” Phys.-Usp. 61, 217–246 (2018).

    Article  Google Scholar 

  65. V. A. Krasnopolsky, “Variations of the HDO/H2O ratio in the Martian atmosphere and loss of water from Mars,” Icarus 257, 377–386 (2015).

    Article  Google Scholar 

  66. V. P. Ogibalov and G. M. Shved, “An improved model of radiative transfer for the NLTE problem in the NIR bands of CO2 and CO molecules in the daytime atmosphere of Mars. 1. Input data and calculation method,” Sol. Syst. Res. 50 (5), 316–328 (2016).

    Article  Google Scholar 

  67. V. P. Ogibalov and G. M. Shved, “An improved model of radiative transfer for the NLTE problem in the NIR bands of CO2 and CO molecules in the daytime atmosphere of Mars. 2. Population of vibrational states,” Sol. Syst. Res. 51, 373–385 (2017).

    Article  Google Scholar 

  68. M. A. Lopez-Valverde, et al., “Investigations of the Mars upper atmosphere with ExoMars Trace Gas Orbiter,” Space Sci. Rev. 214 (1), 29 (2018). https://doi.org/10.1007/s11214-017-0463-4

    Article  Google Scholar 

  69. O. I. Korablev, F. Montmessin, A. A. Fedorova, N. I. Ignatiev, A. V. Shakun, A. V. Trokhimovskiy, A. V. Grigoriev, K. A. Anufreichik, and T. O. Kozlova, “ACS experiment for atmospheric studies on “ExoMars-2016” orbiter,” Sol. Syst. Res. 49 (7), 529–537 (2015). https://doi.org/10.1134/S003809461507014X

    Article  Google Scholar 

  70. O. Korablev et al., “The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter,” Space Sci. Rev. 214, 7 (2018).

    Article  Google Scholar 

  71. A. C. Vandaele et al., “Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission,” Planet. Space Sci. 119, 233–249 (2015). https://doi.org/10.1016/j.pss.2015.10.003

    Article  Google Scholar 

  72. S. Robert et al., “Expected performances of the N-OMAD/ExoMars instrument,” Planet. Space Sci. 124, 94–104 (2016). https://doi.org/10.1016/j.pss.2016.03.003

    Article  Google Scholar 

  73. A. C. Vandaele et al., “NOMAD, an integrated suite of three spectrometers for the ExoMars Trace Gas mission: Technical description, science objectives and expected performance,” Space Sci. Rev. 214, 5 (2018).

    Article  Google Scholar 

  74. L. M. Zelenyi, O. I. Korablev, D. S. Rodionov, B. S. Novikov, K. I. Marchenkov, O. N. Andreev, and E. V. Larionov, “Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission,” Sol. Syst. Res. 49 (7), 509–517 (2015).

    Article  Google Scholar 

  75. A. -M. Harri, et al., “The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars,” Geosci. Instrum., Methods Data Syst. 6, (1), 103–124 (2017).

    Article  Google Scholar 

  76. E. N. Evlanov, M. A. Zav’yalov, S. N. Podkolzin, D. S. Rodionov, P. M. Tyuryukanov, A. N. Lipatov, and A. P. Ekonomov, “Gas discharge anemometer,” Datch. Sist., No. 3 (190), 47–50 (2015).

  77. J. L. Vago et al., “Habitability on early Mars and the search for biosignatures with the ExoMars rover,” Astrobiology 17, 471–510 (2017).

    Article  Google Scholar 

  78. O. I. Korablev et al., “Infrared spectrometer for ExoMars: a mast-mounted instrument for the rover,” Astrobiology 17, 542–564 (2017).

    Article  Google Scholar 

  79. D. Grassi et al., “Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms,” J. Quant. Spectrosc. Radiat. Transfer 202, 200–209 (2017). https://doi.org/10.1016/j.jqsrt.2017.08.008

    Article  Google Scholar 

  80. V. A. Krasnopolsky, “Some problems in interpretation of the New Horizons observations of Pluto’s atmosphere,” Icarus 301, 152–154 (2018). https://doi.org/10.1016/j.icarus.2017.08.021

    Article  Google Scholar 

  81. V. A. Krasnopolsky, “Isotopic ratio of nitrogen on Titan: Photochemical interpretation,” Planet. Space Sci. 134, 61–63 (2016). https://doi.org/10.1016/j.pss.2016.10.008

    Article  Google Scholar 

  82. C. Plainaki, T. A. Cassidy, V. I. Shematovich, A. Milillo, P. Wurz, A. Vorburger, L. Roth, A. Galli, M. Rubin, A. Blöcker, P. C. Brandt, F. Crary, I. Dandouras, X. Jia, D. Grassi, P. Hartogh, A. Lucchetti, M. McGrath, V. Mangano, A. Mura, S. Orsini, C. Paranicas, A. Radioti, K. D. Retherford, J. Saur, and B. Teolis, “Towards a global unified model of Europa’s tenuous atmosphere,” Space Sci. Rev. 214 (1), 40 (2018).

    Article  Google Scholar 

  83. A. Lucchetti, C. Plainaki, G. Cremonese, A. Milillo, T. Cassidy, X. Jia, and V. Shematovich, “Loss rates of Europa’s tenuous atmosphere,” Planet. Space Sci. 130, 1423 (2016).

    Article  Google Scholar 

  84. V. I. Shematovich, “Neutral atmosphere near the icy surface of Jupiter’s moon Ganymede,” Sol. Syst. Res. 50 (4), 262–280 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Korablev.

Additional information

Russian National Report. Meteorology and Atmospheric Sciences: 2015–2018 for the XXVII General Assembly of the International Union of Geodesy and Geophysics (Montreal, Canada, July 8–18, 2019) / Ed.: Mokhov I.I., Krivolutsky A.A.— Moscow: MAKS Press, 2019. 332 p. DOI 10.29003/m662.978-5-317-06182-1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korablev, O.I. Studies of Planetary Atmospheres in Russia (2015–2018). Izv. Atmos. Ocean. Phys. 56, 130–140 (2020). https://doi.org/10.1134/S0001433820020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820020061

Keywords:

Navigation