Skip to main content
Log in

On the Problem of Accounting for Paleoearthquakes When Evaluating the Seismic Hazard of Fennoscandia

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract—

Earthquakes of magnitude M ≥ 6.5 have been unknown in Fennoscandia for almost 900 years of historical data, but a sharp outburst of postglacial seismic activity with earthquake magnitude up to M ≥ 8 revealed by paleoseismogeological studies occurred there in 11 000–9000 BP. This outburst sharply decreased in time to the relatively low modern seismic activity almost exponentially. Strong paleoearthquakes were not randomly distributed over the timeline, but formed a group, or a cluster, confined to the maximum phase of deglaciation. This indicates a sharp nonstationary mode of paleoseismicity. On this basis, a conclusion about the fundamental difference between the geodynamic regimes of paleo- and ordinary modern seismicity has been drawn. An analysis of the historical seismicity of Fennoscandia over the past ~900 years has shown that the magnitude of the strongest known earthquake, in contrast to paleoearthquakes, did not exceed 6.5. It is logical to assume that the occurrence of earthquakes of intensity 9–10 on the territory of Fennoscandia is very unlikely now or in the near future. Therefore, when assessing seismic hazard and the environs of critical engineering facilities, including nuclear power plants, it is hardly necessary to take into account paleoearthquakes. One exception may be assessing the seismic hazard for disposal sites of highly toxic and nuclear waste, the biological hazard period of which can reach 100 000 years or more, which is comparable with glaciation periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ahjos, T. and Uski, M., Earthquakes in Northern Europe in 1375–1989, Tectonophysics, 1992, vol. 207, pp. 1–23.

    Article  Google Scholar 

  2. Arvidsson, R., Fennoscandian earthquakes: Whole crust rupturing related to postglacial rebound, Science, 1996, vol. 274, pp. 744–746.

    Article  Google Scholar 

  3. Arvidsson, R. and Kulhanek, O., Seismodynamics of Sweden deduced from earthquake focal mechanisms, Geophys. J. Int., 1994, vol. 116, pp. 377–392.

    Article  Google Scholar 

  4. Assinovskaya, B.A., Gabsatarova, I.P., Panas, N.M., and Uski, M., Seismic events in 2014–2016 around the Karelian Isthmus and their nature, Seism. Instrum., 2019, vol. 54, no. 1, pp. 40–61. https://doi.org/10.3103/S074792391901002X

    Article  Google Scholar 

  5. Avetisov, G.P., Seismoaktivnye zony Arktiki (Seismoactive Zones of the Arctic Region), St. Petersburg.: VNIIOkeanologiya, 1996a.

  6. Avetisov, G.P., Tectonic factors of intraplate seismicity of the Arctic’s western sector, Fiz. Zemli, 1996b, no. 12, pp. 59–71.

  7. Baranov, S.V., Vinogradov, A.N., Nikolaeva, S.B., Petrov, S.I., Kola Peninsula seismicity according to instrumental data, in Sovremennye metody obrabotki i interpretatsii seismicheskikh dannykh: Materialy VI Mezhdunar. seismol. shkoly (The Modern Methods of Seismological Data Processing and Interpretation: Materials VI Int. Seismol. School), Obninsk, 2011, pp. 47–51.

  8. Bungum, H. and Olesen, O., The 31st of August 1819 Luroy earthquake revisited, Norw. J. Geol., 2005, vol. 85, pp. 245–252.

    Google Scholar 

  9. Bungum, H., Lindholm, C., and Faleide, J.I., Postglacial seismicity offshore mid-Norway with emphasis on spatio-temporal–magnitudal variations, Mar. Pet. Geol., 2005, vol. 22, pp. 137–148. https://doi.org/10.1016/j.marpetgeo.2004.10.007

    Article  Google Scholar 

  10. Bungum, H., Alsaker, A., Kvamme, L.B., and Hansen, R.A., Seismicity and seismotectonics of Norway and nearby continental shelf areas, J. Geophys. Res., 1991, vol. 96, pp. 2249–2265.

    Article  Google Scholar 

  11. Bungum, H., Lindholm, C.D., Dahle, A., Hicks, E., Hogden, H., Nadim, F., Holme, J.K., and Harbitz, C., Development of a seismic zonation for Norway: Report for Norwegian Council for Building Standardization (on behalf of a consortium of industrial partners), Oslo: NORSAR and Norw. Geotech. Inst., 1998.

    Google Scholar 

  12. Bungum, H., Lindholm, C.D., Dahle, A., Woo, G., Nadim, F., Holme, J.K., Gudmestad, O.T., Hagberg, T., and Karthigeyan, K., New seismic zoning maps for Norway, the North Sea and the UK, Seism. Res. Lett., 2000, vol. 71, pp. 687–697.

    Article  Google Scholar 

  13. Bungum, H., Olesen, O., Pascal, C., Gibbons, S., Lindholm, C., and Vestol, O., To what extent is the present seismicity of Norway driven by post-glacial rebound?, J. Geol. Soc. (London, U. K.), 2010, vol. 167, pp. 373–384. https://doi.org/10.1144/0016-76492009-009

    Article  Google Scholar 

  14. Byrkjeland, U., Bungum, H., and Eldholm, O., Seismotectonics of the Norwegian continental margin, J. Geophys. Res., 2000, vol. 105, pp. 6221–6236.

    Article  Google Scholar 

  15. Craig, T.J., Calais, E., Fleitout, L., Bollinger, L., and Scotti O., Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes, Geophys. Res. Lett., 2016, vol.43, pp. 6826–6836. https://doi.org/10.1002/2016GL069359

    Article  Google Scholar 

  16. Erteleva, O.O., Sidorin, A.Ya., Sokolova, E.Yu., Lukk, A.A., Nikonov, A.A., Aptikaev, F.F., and Shvarev, S.V., Methods for assessing the seismic hazard of stable continental areas using combined paleoseismological and geophysical data, Seism. Instrum., 2019, vol. 55, no. 4, pp. 464–485. https://doi.org/10.3103/S0747923919040078

    Article  Google Scholar 

  17. Fjeldskaar, W., Lindholm, C., Dehls, J.F., and Fjeldskaar, I., Postglacial uplift, neotectonics and seismicity in Fennoscandia, Quat. Sci. Rev., 2000, vol. 19, pp. 1413–1422.

    Article  Google Scholar 

  18. Gorbatov, E.S. and Kolesnikov, S.F., Deformation structures in glaciolacustrine deposits of the Khibiny and assessment of its seismogenic potential, Seism. Instrum., 2017, vol. 53, no. 3, pp. 224–233. https://doi.org/10.3103/S0747923917030033

    Article  Google Scholar 

  19. Gorbatov, E.S., Sorokin, A.A., Marakhanov, A.V., and Lar’kov, A.S., Results of detailed paleoseismic studies of the Kindo Peninsula (Karelian coast of the White Sea), Seism., Instrum., 2018, vol. 54, no. 3, pp. 299–313. https://doi.org/10.3103/S0747923918030118

    Article  Google Scholar 

  20. Gregersen, S., Crustal stress regime in Fennoscandia from focal mechanisms, J. Geophys. Res., 1992, vol. 97, pp. 11821–11827.

    Article  Google Scholar 

  21. Gregersen, S., Intraplate earthquakes in Scandinavia and Greenland neotectonics or postglacial uplift, J. Ind. Geophys. Union, 2006, vol. 10, no. 1, pp. 25–30.

    Google Scholar 

  22. Gregersen, S., Korhonen, H., and Husebye, E.S., Fennoscandian dynamics: Present-day earthquake activity, Tectonophysics, 1991, vol. 189, pp. 333–344.

    Article  Google Scholar 

  23. Hicks, E.C., Bungum, H., and Lindholm, C.D., Seismic activity, inferred crustal stresses and seismotectonics in the Rana region, Northern Norway, Quat. Sci. Rev., 2000, vol. 19, pp. 1423–1436.

    Article  Google Scholar 

  24. Hyvönen T., Seismic Tomography and Earthquake Mechanism beneath the Central Fennoscandian shield, Report S-52, Institute of Seismology, University of Helsinki, Helsinki: Helsinki Univ. Print, 2008, pp. 1–56.

  25. Johnston, A.C., Suppression of earthquakes by large continental ice sheets, Nature, 1987, vol. 330, pp. 467–469.

    Article  Google Scholar 

  26. Johnston, A.C., The effect of large ice sheets on earthquake genesis, in Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Gregersen, S. and Basham, P., Eds., Dordrecht: Kluwer Acad. Publ., 1989, pp. 581–599.

    Google Scholar 

  27. Keiding, M., Kreemer, C., Lindholm, C.D., Gradmann, S., Olesen, O., and Kierulf, H.P., A comparison of strain rates and seismicity for Fennoscandia: Depth dependency of deformation from glacial isostatic adjustment, Geophys. J. Int., 2015, vol. 202, pp. 1021–1028. https://doi.org/10.1093/gji/ggv207

    Article  Google Scholar 

  28. Khromovskikh, V.S., Solonenko, V.P., Semenov, R.M., and Shilkin, V.M., Paleoseismologiya Bol’shogo Kavkaza (Paleoseismology of the Greater Caucasus), Moscow: Nauka, 1979.

  29. Korja, A. and Kosonen, E., Seismotectonic framework and seismic source area models in Fennoscandia, Northern Europe, Helsinki: Inst. of Seismol., Univ. of Helsinki, 2015.

    Google Scholar 

  30. Kotilainen, A. and Hutri, K.-L., Submarine Holocene sedimentary disturbances in the Olkiluoto area of the Gulf of Bothnia: A case of postglacial paleoseismicity, Quat. Sci. Rev., 2004, vol. 23, pp. 1125–1135.

    Article  Google Scholar 

  31. Kuivamäki, A., Vuorela, P., Paananen, M., Indications of postglacial and recent bedrock movements in Finland and Russian Karelia, Geol. Surv. of Finland. Rep. YST-99, 1998, pp. 1–92.

  32. Kujansuu, R., On landslides in Finland Lapland, Bull. - Geol. Surv. Finl., 1972, vol. 256, pp. 1–22.

    Google Scholar 

  33. Lagerback, R.and Sundh, M., Early Holocene Faulting and Paleoseismicity in Northern Sweden. Geol. Surv. of Sweden. Res. Paper C 836, Uppsala, 2008.

  34. La Pointe, P., Cladouhos, T.T., and Follin, S., Development, application, and evaluation of a methodology to estimate distributed slip on fractures due to future earthquakes for nuclear waste repository performance assessment, Bull. Seismol. Soc. Am., 2002, vol. 92, no. 3, pp. 923–944.

    Article  Google Scholar 

  35. Lehmann, I., Danskejordskalv, Medd. Dan. Geol. Fӧren., 1956, vol. 13, pp. 88–103.

    Google Scholar 

  36. Lukk, A.A., Leonova V.G., and Sidorin, A.Ya. Revisiting the origin of seismicity in Fennoscandia, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 7, pp. 743–758. https://doi.org/10.1134/S000143381907003X

    Article  Google Scholar 

  37. Mäntyniemi, P., Husebye, E.S., Kebeasy, T.R.M., Nikonov, A.A., Nikulin, V., and Pacesa, A., State-of-the-art of historical earthquake research in Fennoscandia and the Baltic republics, Ann. Geophys., 2004, vol. 47, no. 2–3, pp. 611–619.

    Google Scholar 

  38. Mӧrner, N.-A., The Fennoscandian uplift and Late Cenozoic geodynamics: Geological evidence, GeoJournal, 1979, vol. 33, pp. 287–318.

    Google Scholar 

  39. Mӧrner, N.-A., Paleoseismicity of Sweden – a novel paradigm. A contribution to INQUA from its sub-commission on paleoseismology at the 16th Intern. INQUA congress in Reno, Nevada, Reno: P&G print, 2003.

  40. Mӧrner, N.-A., Paleoseismicity and Uplift of Sweden: Guide-Book. Excursion N 11 at 33rd IGC, Oslo, 2008. URL: www.33IGC.org

  41. Mӧrner, N.-A., Active faults and paleoseismicity in Fennoscandia, especially Sweden. Primary structures and secondary effects, Tectonophysics, 2004, vol. 380, pp. 139–157. https://doi.org/10.1016/j.tecto.2003.09.018

    Article  Google Scholar 

  42. Mӧrner, N.-A., An interpretation and catalogue of paleoseismicity in Sweden, Tectonophysics, 2005, vol. 408, no. 1–4, pp. 265–307.

    Article  Google Scholar 

  43. Mӧrner, N.-A., Late Holocene earthquake geology in Sweden, Geol. Soc. Spec. Publ., 2009, vol. 316, pp. 179–188.

    Article  Google Scholar 

  44. Mӧrner, N.-A., Paleoseismology: The application of multiple parameters in four case studies in Sweden, Quatern. Intern., 2011, vol. 242, pp. 65–75.

    Article  Google Scholar 

  45. Mӧrner, N.-A., Patterns in seismology and palaeoseismology, and their application in long-term hazard assessments – the Swedish case in view of nuclear waste management, Patt. Recogn. Phys., 2013, vol. 1, pp. 75–89. https://doi.org/10.5194/prp-1-75-2013

    Article  Google Scholar 

  46. Mӧrner, N.-A., Liquefaction structures from a high-magnitude paleoseismic event at about 12,400 C14-years BP in Southern Sweden, Open J.Earth. Res., 2017, vol. 6, pp. 216–227. https://doi.org/10.4236/ojer.2017.64014

    Article  Google Scholar 

  47. Mӧrner, N.-A. and Sjoberg, R., Merging the concepts of pseudokarst and paleoseismicity in Sweden: A unified theory on the formation of fractures, fracture caves, and angular block heaps, Int. J. Speleol., 2018, vol. 47, no. 3, pp. 393–405. https://doi.org/10.5038/1827-806X.47.3.222

    Article  Google Scholar 

  48. Muir-Wood, R., Extraordinary deglaciation reverse faulting in Northern Fennoscandia, in Earthquakes at North-Atlantic passive margins: Neotectonics and postglacial rebound, Gregersen, S. and Basham, P., Eds., Dordrecht: Kluwer Acad. Publ., 1989, pp. 141–173.

    Google Scholar 

  49. Muir-Wood R. Deglaciation seismotectonics: A principal influence on intraplate seismogenesis at high latitudes, Quarter. Sci. Rev., 2000, vol. 19, no. 14–15, pp. 1399–1411.

    Article  Google Scholar 

  50. Nikolaeva, S.B., Evidence of seismic events on the Murman coast in the lateglacial period and the Holocene (northeast of the Baltic Shield), Izv. RGO, 2013, vol. 165, no. 4, pp. 53–65.

    Google Scholar 

  51. Nikolaeva, S.B., and Evzerov, V.Ya., On the Kola Region geodynamics in the Late Pleistocene and Holocene: Overview and study results, Vestn. Voronezh. Gos. Univ., Ser. Geol., 2018, no. 1, pp. 5–14.

  52. Nikolaeva, S.B., Nikonov, A.A., and Shvarev, S.V., Detailed paleoseismogeological studies at the key site in the side zone of the Lake Imandra Basin (European Polar region): New approaches and results, in Geologiya i paleogeografiya polyarnykh raionov (Geology and Paleogeography of Polar Regions), St. Petersburg, 2012, pp. 151–163.

    Google Scholar 

  53. Nikolaeva, S.B., Nikonov, A.A., Shvarev, S.V., and Rodkin, M.V., Detailed paleoseismological research on the flank of the Lake Imandra depression (Kola region): New approaches and results, Russ. Geol. Geophys., 2018, vol. 59, no. 6, pp. 697–708. https://doi.org/10.1016/j.rgg.2018.05.008

    Article  Google Scholar 

  54. Nikonov, A.A., Earthquakes and paleoearthquakes in the southeastern Baltic Sheild, Geodinamika i geoekologiya. Materialy Mezhdunarodnoi konferentsii (Geodynamics and Geoecology: Proceedings of the International Conference), Arkhangelsk, 1999, Arkhangelsk: Inst. Ekol. Probl. Severa Ural. Otd. Ross. Akad. Nauk, 1999, p. 270.

  55. Nikonov, A.A., Seismicity of Karelia: Historical earthquakes, in Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniya (Deep Structure and Seismicity of Karelia and Adjacent Territories), Sharov, N.V., Ed., Petrozavodsk: KarNTs RAN, 2004, pp. 192–213.

  56. Nikonov, A.A., A new stage in understanding seismicity of the East European Platform and its margins, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 638–642.

    Article  Google Scholar 

  57. Nikonov, A.A., The strongest historical earthquake on the Murman coast (after a Dvina Pomor legend), in Yudakhinskie chteniya. Geodinamika i ekologiya Barents-regiona XXI v.: Materialy dokl. Vseros. konf. s mezhdunar. uchastiem, g. Arkhangel’sk, 15-18 sentyabrya 2014 (Yudakhin Readings. Geodynamics and Ecology of the Barents Region in the 21st century: Materials All-Russ. Conf. with Int. Participation, Arkhangelsk, September 15–18, 2014), Arkhangelsk, 2014.

  58. Nikonov, A.A. and Shvarev, S.V., Prehistorical earthquakes in the context of improving seismic hazard assessment (earthquake safety) for the East European Platform and its framing, VII Obshcherossiiskaya konferentsiya “Perspektivy razvitiya inzhenernykh izyskanii v stroitel’stve v Rossiiskoi federatsii” (VII All-Russia Conference “Perspectives of Engineering Investigations Development in Building Industry of Russian Federation”), Moscow, 2011, pp. 224–227.

  59. Nikonov, A.A. and Shvarev, S.V., Seismolineaments and destructive earthquakes in the Russian part of the Baltic Shield: New solutions for the last 13 000 years, in Geologo-geofizicheskaya sreda i raznoobraznye proyavleniya seismichnosti. Materialy Mezhdunarodnoi konferentsii (Geological-Geophysical Medium and Various Manifestations of Seismicity: Proceedings of the International Conference), Neryungri, Russia, 2015, Neryungri: Tekh. Inst. (Fil.) Sev-Vost. Fed. Univ., 2015, pp. 243–251.

  60. Nikonov, A.A. and Zykov, D.S., On the signs of strong earthquakes in the eastern sector of the Murmansk zone (Karpinsky line), Trudy Fersmanovskoi nauchnoi sessii GI KNTs RAN (Proceedings of the Fersman Scientific Session of the Geological Institute, Kola Research Center of the Russian Academy of Sciences), Apatity, Russia, 2017, Apatity: Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 2017, vol. 14, pp. 143–148.

  61. Nikonov, A.A., Poleshchuk, A.V., and Zykov, D.S., On recent faults and paleoseismic fractures in the palaeoproterozoic Onega structure of the Fennoscandian shield, Tr. Karel. nauch. tsentra RAS, 2017, no. 11, pp. 3–18. https://doi.org/10.17076/geo549

  62. Nikonov, A.A., Shvarev, S.V., Sim, L.A., Rodkin, M.V., Biske, Yu.S., and Marinin, A.V., Paleoseismodeformations of hard rocks in the Karelian isthmus, Dokl. Earth Sci., 2014, vol. 457, no. 2, pp. 1008–1013.

    Article  Google Scholar 

  63. Nikonov, A.A., Zykov, D.S., Nikolaeva, S.B., and Shvarev, S.V. The “Karpinski line” suture zone in Northern Europe as a tectonically and seismically active higher-order seismolineament, in Problemy tektoniki i geodinamiki zemnoi kory i mantii: Materialy L Tekton. soveshch. (Problems of Tectonics and Geodynamics of the Earth’s Crust and Mantle. Materials L Tecton, Meeting) 2018, pp. 52–56.

  64. Olesen, O., Bungum, H., Dehls, J., Lindholm, C., Pascal, C., and Roberts, D., Neotectonics, seismicity and contemporary stress field in Norway – mechanisms and implications, in Geol. Survey of Norway Spec. Publ., Quarter. Geol. Norway, Olsen, L., Fredin, O., and Olesen, O., Eds., 2013a, vol. 13, pp. 145–174.

  65. Olesen, O., Kierulf, H.P., Bronner, M., Dalsegg, E., Fredin, O., and Solbakk, T., Deep weathering, neotectonics and strandflat formation in Nordland, Northern Norway, Norw.J. Geol., 2013b, vol. 93, pp. 189–213.

    Google Scholar 

  66. Paleoseismology, McCalpin, J.P., Ed., Amsterdam: Elsevier, 2009.

  67. Quinlan, G., Postglacial rebound and the focal mechanisms of eastern Canadian earthquakes, Can. J. Earth Sci., 1984, vol. 21, pp. 1018–1023. https://doi.org/10.1139/e84-106

    Article  Google Scholar 

  68. Rogozhin, E.A., Reconstruction of long-term seismic regimen based on paleoseismological data, Ekstremal’nye prirodnye yavleniya i katastrofy. T. 1. Otsenka i puti snizheniya negativnykh posledstvii ekstremal’nykh prirodnykh yavlenii (Extreme Natural Phenomena and Disasters. Vol. 1. Assessment and Approaches for Alleviation of the Negative Consequences of Extreme Natural Phenomena), Moscow: IFZ RAN, 2010, pp. 44–64.

  69. Rogozhin, E.A., Ocherki regional’noi seismotektoniki (Essays on Regional Seismotectonics), Moscow: IFZ RAN, 2012.

  70. Rogozhin, E.A., Gurbanov, A.G., Marakhanov, Ovsyuchenko, A.N., Spiridonov, A.V., and Burkanov, E.E., On the relationship between volcanic features and earthquakes in the Northern Caucasus in the Holocene, Izv.,Phys. Solid Earth, 2005, vol. 4, no. 3, pp. 206–217.

    Google Scholar 

  71. Rodina, S.N., Reconstruction of the long-term seismic regimen of the Koryak Highlands based on paleoseismological data, in Sovremennye metody obrabotki i interpretatsii seismicheskikh dannykh: Materialy VI Mezhdunar. seismol. shkoly (The Modern Methods of Seismological Data Processing and Interpretation: Materials VI Int. Seismol. School), 2011, pp. 271–274.

  72. Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniya (Deep Structure and Seismicity of Karelia and Adjacent Territories), Sharov, N.V., Ed., Petrozavodsk: KarNTs RAN, 2004.

  73. Sharov, N.V., Seismic monitoring of natural and technogenic events in the territory of Karelia, in Geologiya Karelii ot arkheya do nashikh dnei (Geology of Karelia since the Archean until Present), Petrozavodsk: Inst. Geol. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2011, pp. 199–203.

  74. Shvarev, S.V. and Rodkin, M.V., Structural position and parameters of the paleoearthquakes in the area of Vottovaara Mountain (Middle Karelia, eastern part of the Fennoscandian Shield), Seism. Instrum., 2018, vol. 54, no. 2, pp. 199–218. https://doi.org/10.3103/S0747923918020093

    Article  Google Scholar 

  75. Shvarev, S.V., Nikonov, A.A., and Rusakov, A.V., Wedge-shaped structures in unconsolidated deposits of the Neva lowland as a result of seismic effects in the early Holocene: The Nizino case study, Geomorfologiya, 2018a, no. 2, pp. 99–114. https://doi.org/10.7868/S0435428118020086

  76. Shvarev, S.V., Nikonov, A.A., Rodkin, M.V., and Poleshchuk, A.V., The active tectonics of the Vuoksi Fault Zone in the Karelian isthmus: Parameters of paleoearthquakes estimated from bedrock and soft sediment deformation features, Bull. Geol. Soc. Finland, 2018b, vol. 90, no 2, pp. 257–273. https://doi.org/10.17741/bgsf/90.2.009

  77. Sidorin, A.Y., Problems of seismic hazard assessment for nuclear power facilities on the Kola Peninsula and in Karelia, Seism. Instr., 2019, vol. 55, no. 6, pp. 688–691. https://doi.org/10.3103/S0747923919060070

  78. Slunga, R.S., Fault mechanism of Fennoscandian earthquakes and regional crustal stresses, Geol.För. i Stockholm Förhandlingar, 1981, vol. 103, pp. 27–31.

    Article  Google Scholar 

  79. Slunga, R.S., Baltic Shield seismicity: The results of a regional network, Geophys. Res. Lett., 1984, vol. 11, pp. 1247–1250.

    Article  Google Scholar 

  80. Slunga, R.S., Focal mechanisms and crustal stresses in the Baltic Shield, in Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Gregersen, S. and Basham, P., Eds., Dordrecht: Kluwer Acad. Publ., 1989, pp. 261–276.

    Google Scholar 

  81. Solheim, A., Berg, K., Forsberg, C.F., and Bryn, P., The Storegga Slide complex: Repetitive large scale sliding with similar cause and development, Mar. Pet. Geol., 2005, vol. 22, pp. 97–107.

    Article  Google Scholar 

  82. Steffen, H. and Wu, P., Glacial isostatic adjustment in Fennoscandia: A review of data and modeling, J. Geodyn., 2011, vol. 52, pp. 169–204.

    Article  Google Scholar 

  83. Steffen, R., Wu, P., Steffen, H., and Eaton, D.W., The effect of earth rheology and ice-sheet size on fault slip and magnitude of post glacial earthquakes, Earth Planet. Sci. Lett., 2014a, vol. 388, pp. 71–80.

    Article  Google Scholar 

  84. Steffen, R., Wu, P., Steffen, H., and Eaton, D.W., On the implementation of faults in finite-element glacialisostatic adjustment models, Comput. Geosci., 2014b, vol. 62, pp. 150–159.

    Article  Google Scholar 

  85. Tatevossian, R.E., Mäntyniemi, P., and Tatevossian, T.N., On the earthquakes in the Northern Baltic shield in the spring of 1626, Nat. Hazards, 2011, vol. 57, pp. 133–150. https://doi.org/10.1007/s11069-010-9516-7

    Article  Google Scholar 

  86. Tatevossian, R.E., Mokrushina, N.G., Aptekman, Zh.Ya., and Tatevossian, T.N., On the relevancy of the combination of macroseismic and paleoseismic data, Seism. Instrum., 2013, vol. 49, no. 2, pp. 115–138.https://doi.org/10.3103/S0747923913020035

    Article  Google Scholar 

  87. Vestol, O., Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation, J. Geodesy, 2006, vol. 80, pp. 248–258.

    Article  Google Scholar 

  88. Wahlstrom, R., Seismodynamics and postglacial faulting in the Baltic Shield, in Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Gregersen, S. and Basham, P., Eds., Dordrecht: Kluwer Acad. Publ., 1989, pp. 467–482.

    Google Scholar 

  89. Wells, D.L. and Coppersmith, K.J., New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 1994, vol. 84, no. 4, pp. 974–1002.

    Google Scholar 

  90. Wu, P., Johnston, P., Lambeck, K., Postglacial rebound and fault instability in Fennoscandia, Geophys. J. Int., 1999, vol. 139, pp. 657–670.

    Article  Google Scholar 

  91. Zakharova, A.I. and Rogozhin, E.A., Seismic regime of Gornyi Altai and the strong earthquake of 2003, Sil’noe zemletryasenie na Altae 27 sentyabrya 2003 g.: Materialy predvaritel’nogo izucheniya (The Altai Strong Earthquake of September 27, 2003: Results of Preliminary Studies), Moscow: IFZ RAN, 2004, pp. 50–54.

  92. Zakharova, A.I. and Rogozhin, E.A., Precursors of strong earthquakes in the Kuril Islands region after 2004, in Geofizika XXI stoletiya: 2005 god. Sbornik trudov Sed’mykh geofizicheskikh chtenii im. V.V. Fedynskogo, 3–5 marta 2005 g. (Geophysics of XXI Century: 2005. Proc. 7th Geophysical Readings Named after V.V. Fedynskii, March 3–5, 2005), Moscow: Nauch. Mir, 2006, pp. 268–275.

Download references

Funding

This work was carried out in accordance with State Assignment project no. 0144-2019-0011 for the Schmidt Institute of Physics of the Earth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lukk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Hannibal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukk, A.A., Sidorin, A.Y. On the Problem of Accounting for Paleoearthquakes When Evaluating the Seismic Hazard of Fennoscandia. Izv. Atmos. Ocean. Phys. 55, 1699–1714 (2019). https://doi.org/10.1134/S0001433819110112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819110112

Keywords:

Navigation