Skip to main content
Log in

Modeling Black Sea circulation with high resolution in the coastal zone

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We present a numerical model of Black Sea circulation based on primitive equations with improved spatial resolution in the coastal zone. The model equations are formulated in a two-pole orthogonal coordinate system with arbitrary locations of the poles and a vertical σ coordinate. Increased horizontal resolution is gained by displacing the pole into the vicinity of the separated subdomain. The problem is solved over a grid with a variable step. The northern coordinate pole is displaced to the vicinity of Gelendzhik; the grid step varies from 150 m in the coastal zone to 4.6 km in the main basin. We simulated the fields of currents, sea level, temperature, and salinity under the given atmospheric forcing in 2007. The model is capable of reproducing the large-scale Black Sea circulation and submesoscale variations in the coastal currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Marchuk and B. E. Paton, “The Black Sea as a simulation ocean model,” Russ. J. Numer. Anal. Math. Modell. 27 (1), 1–4 (2012).

    Article  Google Scholar 

  2. G. I. Marchuk, B. E. Paton, G. K. Korotaev, and V. B. Zalesny, “Data-computing technologies: A new stage in the development of operational oceanography,” Izv., Atmos. Ocean. Phys. 49 (6), 579–591 (2013).

    Article  Google Scholar 

  3. S. G. Demyshev and O. A. Dymova, “Numerical analysis of the mesoscale features of circulation in the Black Sea coastal zone,” Izv., Atmos. Ocean. Phys. 49 (6), 603–610 (2013).

    Article  Google Scholar 

  4. A. A. Kordzadze and D. I. Demetrashvili, “Shortrange forecast of hydrophysical fields in the eastern part of the Black Sea,” Izv., Atmos. Ocean. Phys. 49 (6), 674–685 (2013).

    Article  Google Scholar 

  5. V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution,” Izv., Atmos. Ocean. Phys. 49 (6), 592–602 (2013).

    Article  Google Scholar 

  6. G. K. Korotaev, V. V. Knysh, and A. I. Kubryakov, “Study of formation process of cold intermediate layer based on reanalysis of Black Sea hydrophysical fields for 1971–1993,” Izv., Atmos. Ocean. Phys. 50 (1), 35–48 (2014).

    Article  Google Scholar 

  7. E. V. Stanev, “Understanding Black Sea Dynamics,” Oceanography 18 (2), 56–75 (2005).

    Article  Google Scholar 

  8. A. A. Kordzadze and D. I. Demetrashvili, “Operative forecast of hydrophysical fields in the Georgian Black Sea coastal zone within the ECOOP,” Ocean Sci 7 (6), 793–803 (2011).

    Article  Google Scholar 

  9. G. K. Korotaev, T. Oguz, V. L. Dorofeev, et al., “Development of Black Sea nowcasting and forecasting system,” Ocean Sci. 7 (5), 629–649 (2011).

    Article  Google Scholar 

  10. V. B. Zalesny, N. A. Diansky, V. V. Fomin, et al., “Numerical model of the circulation of the Black Sea and the Sea of Azov,” Russ. J. Numer. Anal. Math. Modell. 27 (1), 95–111 (2012).

    Article  Google Scholar 

  11. G. K. Korotaev, O. A. Saenko, and C. R. Koblinsky, “Satellite altimetry observations of the Black Sea level,” J. Geophys. Res. 106 (C1), 917–933 (2001).

    Article  Google Scholar 

  12. E. V. Stanev, P. Y. Le Traon, and E. L. Peneva, “Sea level variations and their dependency on meteorological and hydrological forcing: Analysis of altimeter and surface data for the Black Sea,” J. Geophys. Res. 105, 17.203–17.221 (2000).

    Article  Google Scholar 

  13. S. P. Lyubartseva, V. A. Ivanov, A. V. Bagaev, et al., “Three-dimensional numerical model of polychlorobiphenyls dynamics in the Black Sea,” Russ. J. Numer. Anal. Math. Modell. 27 (1), 53–68 (2012).

    Article  Google Scholar 

  14. A. G. Zatsepin, A. A. Kondrashov, A. O. Korzh, et al., “Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation,” Oceanology (Engl. Transl.) 51 (4), 554–567 (2011).

    Google Scholar 

  15. A. G. Zatsepin, A. G. Ostrovskii, V. V. Kremenetskiy, et al., “On the nature of short-period oscillations of the main Black Sea pycnocline, submesoscale eddies, and response of the marine environment to the catastrophic shower of 2012,” Izv., Atmos. Ocean. Phys. 49 (6), 659–673 (2013).

    Article  Google Scholar 

  16. A. G. Zatsepin, A. G. Ostrovskii, V. V. Kremenetskiy, et al., “Subsatellite Polygon for Studying Hydrophysical Processes in the Black Sea Shelf–Slope Zone,” Izv., Atmos. Ocean. Phys. 50 (1), 13–25 (2014).

    Article  Google Scholar 

  17. V. A. Ivanov, “Spatial and temporal variability and monitoring of hydrophysical fields of the Black Sea,” Izv., Atmos. Ocean. Phys. 50 (1), 26–34 (2014).

    Article  Google Scholar 

  18. A. G. Zatsepin, A. O. Korzh, V. V. Kremenetskiy, et al., “Studies of the hydrophysical processes over the shelf and upper part of the continental slope of the Black Sea with the use of traditional and new observation techniques,” Oceanology (Engl. Transl.) 48 (4), 446–475 (2008).

    Google Scholar 

  19. A. G. Zatsepin, A. A. Kondrashov, A. O. Korzh, et al., “Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation,” Oceanology (Engl. Transl.) 51 (4), 554–567 (2011).

    Google Scholar 

  20. G. S. Golitsyn, “On the nature of spiral eddies on the surface of seas and oceans,” Izv., Atmos. Ocean. Phys. 48 (3), 350–357 (2012).

    Article  Google Scholar 

  21. V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, et al., “Numerical modeling of the large-scale ocean circulation on the base of multicomponent splitting method,” Russ. J. Numer. Anal. Math. Modell. 25 (6), 581–609 (2010).

    Article  Google Scholar 

  22. V. B. Zalesny, A. V. Gusev, and S. N. Moshonkin, “Numerical hydrodynamic model of the Black and Azov seas with variational initialization of temperature and salinity,” Izv., Atmos. Ocean. Phys. 49 (6), 642–658 (2013).

    Article  Google Scholar 

  23. G. I. Marchuk, “Splitting and alternative direction methods,” Handbook of Numerical Analysis, Ed. by P. G. Ciarlet and J. L. Lions (North-Holland, Amsterdam, 1990), Vol. 1, pp. 197–462.

    Google Scholar 

  24. IOC, IHO and BODC, 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, U.K.

    Google Scholar 

  25. Ivanov, V.A. and Belokopytov, V.N., Oceanography of the Black Sea, NAS of Ukraine, Marine Hydrophysical Institute, Sevastopol, 2011.

    Google Scholar 

  26. R. C. Pacanowski and G. Philander, “Parameterization of vertical mixing in numerical models of the tropical ocean,” J. Phys. Oceanogr. 11, 1442–1451 (1981).

    Article  Google Scholar 

  27. N. A. Diansky, V. V. Fomin, N. V. Zhokhova, and A. V. Korshenko, “Computation of currents and pollution transport in coastal waters of Greater Sochi on the basis of numerical modeling,” Izv., Atmos. Ocean. Phys. 49 (6), 611–621 (2013).

    Article  Google Scholar 

  28. L. N. Thomas, A. Tandon, and A. Mahadevan, “Submesoscale processes and dynamics,” in Ocean Modeling in an Eddying Regime, Ed. by M. W. Hecht and H. Hasumi (Am. Geophys. Union, Washington D.C., 2008), pp. 17–38.

    Chapter  Google Scholar 

  29. V. B. Zalesny and V. O. Ivchenko, “Influence of anomalous regimes in the Southern Ocean on equatorial dynamics,” Izv., Atmos. Ocean. Phys. 41 (3), 308–324 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Zalesnyi.

Additional information

Original Russian Text © V.B. Zalesnyi, A.V. Gusev, V.I. Agoshkov, 2016, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 3, pp. 316–333.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalesnyi, V.B., Gusev, A.V. & Agoshkov, V.I. Modeling Black Sea circulation with high resolution in the coastal zone. Izv. Atmos. Ocean. Phys. 52, 277–293 (2016). https://doi.org/10.1134/S0001433816030142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816030142

Keywords

Navigation