Skip to main content
Log in

Some directions in the development of dynamic meteorology in Russia in 2007–2010

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A brief review of the results of investigations carried out by Russian scientists in the field of dynamic meteorology in 2007–2010 is presented. This review is based on the information prepared by the Commission on the Dynamic Meteorology of the National Geophysical Committee, Russian Academy of Sciences, and included in the general information report of the Section of Meteorology and Atmospheric Sciences at the XXV General Assembly of the International Union of Geodesy and Geophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Romanova and I. G. Yakushkin, “Hamiltonian Description of Shear and Gravity Shear Waves in an Ideal Incompressible Fluid,” Izv., Atmos. Ocean. Phys. 43(5), 533–543 (2007).

    Article  Google Scholar 

  2. N. N. Romanova, “Resonant Interaction of Waves of Continuous and Discrete Spectra in the Simplest Model of a Stratified Shear Flow,” Izv., Atmos. Ocean. Phys. 44(1), 53–63 (2008).

    Google Scholar 

  3. M. V. Kurgansky, “Vertical Helicity Flux in Atmospheric Vortices as a Measure of Their Intensity,” Izv., Atmos. Ocean. Phys. 44(1), 64–71 (2008).

    Google Scholar 

  4. A. V. Glazunov, V. P. Dymnikov, and V. N. Lykossov, “Mathematical Modelling of Spatial Spectra of Atmospheric Turbulence,” Russ. J. Numer. Anal. Math. Modell. 25(5), 431–451 (2010).

    Article  Google Scholar 

  5. K. K. Tung and W. W. Orlando, “On the Differences Between 2D and QG Turbulence,” Discrete Contin. Dyn. Syst. 3, 145–162 (2003).

    Article  Google Scholar 

  6. G. D. Nastrom and K. S. Gage, “A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft,” J. Atmos. Sci. 42(9), 950–960 (1985).

    Article  Google Scholar 

  7. A. S. Gurvich and V. P. Kukharets, “Horizontal and Oblique Spectra of Temperature Fluctuations in a Stably Stratified Troposphere,” Izv., Atmos. Ocean. Phys. 44(6), 717–722 (2008).

    Article  Google Scholar 

  8. A. S. Gurvich and I. P. Chunchuzov, “Model of the Three-Dimensional Spectrum of Anisotropic Temperature Irregularities in a Stably Stratified Atmosphere,” Izv., Atmos. Ocean. Phys. 44(5), 567–582 (2008).

    Article  Google Scholar 

  9. V. M. Ponomarev, A. A. Khapaev, and I. G. Yakushkin, “Vertical Structure of the Quasi-Two-Dimensional Velocity Field of a Viscous Incompressible Flow and the Problem of Nonlinear Friction,” Izv., Atmos. Ocean. Phys. 44(1), 45–52 (2008).

    Google Scholar 

  10. V. M. Ponomarev, A. A. Khapaev, and I. G. Yakushkin, “Nonlinear Ekman Friction and Asymmetry of Cyclonic and Anticyclonic Coherent Structures in Geophysical Flows,” Dokl. Earth Sci. 425A(3), 510–515 (2009).

    Article  Google Scholar 

  11. A. L. Tseskis, “On the Properties of Decaying Two-Dimensional Turbulence: Characteristic Features of the Spectra and Coherent Structures,” Izv., Atmos. Ocean. Phys. 44(5), 646–659 (2008).

    Article  Google Scholar 

  12. E. B. Gledzer, “Similarity Parameters and a Centrifugal Convective Instability of Horizontally Inhomogeneous Circulations of the Hadley Type,” Izv., Atmos. Ocean. Phys. 44(1), 33–44 (2008).

    Google Scholar 

  13. M. V. Kalashnik, “Linear Dynamics of Eady Waves in the Presence of Horizontal Shear,” Izv., Atmos. Ocean. Phys. 45(6), 714–722 (2009).

    Article  Google Scholar 

  14. E. T. Eady, “Long Waves and Cyclone Waves,” Tellus 1(3), 35–52 (1949).

    Article  Google Scholar 

  15. O. A. Druzhinin, “On the Onset of the Instability of a Three-Dimensional Jet in a Stratified Fluid,” Izv., Atmos. Ocean. Phys. 44(6), 768–780 (2008).

    Article  Google Scholar 

  16. M. V. Kalashnik, “Trapped Symmetric Disturbances in Rotating Shear Flows,” Izv., Atmos. Ocean. Phys. 44(6), 787–794 (2008).

    Article  Google Scholar 

  17. M. V. Kalashnik and K. N. Visheratin, “Cyclostrophic Adjustment and Nonlinear Oscillations in the Core of an Intense Atmospheric Vortex,” Izv., Atmos. Ocean. Phys. 46(5), 591–596 (2010).

    Article  Google Scholar 

  18. V. I. Klyatskin, “Statistics and Reality in Stochastic Dynamical Systems,” in Nonlinear Waves 2004 (IPF RAN, Nizhni Novgorod, 2005), 256–286 [in Russian].

    Google Scholar 

  19. V. I. Klyatskin, “Dynamic Stochastic Systems, Typical Realization Curve, and Lyapunov’s Exponents,” Izv., Atmos. Ocean. Phys. 44(1), 18–32 (2008).

    Google Scholar 

  20. M. B. Isichenko, “Percolation, Statistical Topography, and Transport in Random Media,” Rev. Mod. Phys. 64(4), 961–1043 (1992).

    Article  Google Scholar 

  21. H. L. Tanaka and M. Matsueda, “Analysis of Recent Extreme Events Measured by the Barotropic Component of the Atmosphere,” J. Meteor. Soc. Japan 82(5), 1281–1299 (2004).

    Article  Google Scholar 

  22. G. P. Kurbatkin, “Assessment of the Half-Century Evolution of Mechanisms Controlling the Heat Exchange between High and Midlatitudes in the Annual Cycle,” Izv., Atmos. Ocean. Phys. 44(4), 387–401 (2008).

    Article  Google Scholar 

  23. G. P. Kurbatkin and V. D. Smirnov, “Tropospheric Temperature Interannual Variations Associated with Decadal Changes in the North Atlantic Oscillation,” Izv., Atmos. Ocean. Phys. 46(4), 401–413 (2010).

    Article  Google Scholar 

  24. I. Borovko and V. Krupchatnikov, “The Influence of the Stratosphere Polar Vortex Dynamics upon the Low Troposphere Circulation,” Sib. Zh. Vychisl. Mat. 12(2), 145–160 (2009).

    Google Scholar 

  25. I. Borovko and V. Krupchatnikov, “The Influence of the Stratosphere Polar Vortex Dynamics Upon a Low Troposphere Thermal Stratification,” Bull. Novosib. Comput. Cent.: Numer. Model. Atmos. Ocean Environ. Stud., No. 12, 1–7 (2010).

  26. T. J. Dunkerton and M. P. Baldwin, “Quasi-Biennial Modulation of Planetary-Wave Fluxes in the Northern Hemisphere Winter,” J. Atmos. Sci. 48(8), 1043–1061 (1991).

    Article  Google Scholar 

  27. M. P. Baldwin and T. J. Dunkerton, “Quasi-Biennial Modulations of the Southern Hemisphere Stratospheric Polar Vortex,” Geophys. Res. Lett. 25(17), 3343–3346 (1998).

    Article  Google Scholar 

  28. J. A. Knaff, “Evidence of a Stratospheric QBO Modulation of Tropical Convection,” MS Thesis (Dep. of Atmos. Sci., Colorado State Univ., Fort Collins, 1993).

    Google Scholar 

  29. M. A. Giorgetta, E. Manzini, E. Roeckner, et al., “Climatology and Forcing of the Quasi-Biennial Oscillation in the MAECHAM5 Model,” J. Clim. 19(16), 3882–3901 (2006).

    Article  Google Scholar 

  30. D. V. Kulyamin, E. M. Volodin, and V. P. Dymnikov, “Simulation of the Quasi-Biennial Oscillations of the Zonal Wind in the Equatorial Stratosphere: Part I. Low-Parameter Models,” Izv., Atmos. Ocean. Phys. 44(1), 3–17 (2008).

    Google Scholar 

  31. D. V. Kulyamin, E. M. Volodin, and V. P. Dymnikov, “Simulation of the Quasi-Biennial Oscillations of the Zonal Wind in the Equatorial Stratosphere: Part II. Atmospheric General Circulation Models,” Izv., Atmos. Ocean. Phys. 45(1), 37–54 (2009).

    Article  Google Scholar 

  32. D. V. Kulyamin and V. P. Dymnikov, “Spectral Characteristics of Quasi-Biennial Oscillations of the Equatorial Stratospheric Wind and the Problem of Synchronization,” Izv., Atmos. Ocean. Phys. 46(4), 432–450 (2010).

    Article  Google Scholar 

  33. V. P. Dymnikov and D. V. Kulyamin, “Structural Stability of Quasi-Biennal Oscillations of Zonal Wind in the Equatorial Stratosphere,” Russ. J. Numer. Anal. Math. Modell. 25(3), 235–251 (2010).

    Article  Google Scholar 

  34. R. A. Plumb, “The Interaction of Two Internal Waves with the Mean Flow: Implications for the Theory of the Quasi-Biennial Oscillation,” J. Atmos. Sci. 34(12), 1847–1858 (1977).

    Article  Google Scholar 

  35. C. O. Hines, “Doppler Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. Part 1. Basic Formulation,” J. Atm. Terr. Phys. 59(4), 371–386 (1997).

    Article  Google Scholar 

  36. V. P. Gorbatenko, I. I. Ippolitov, S. V. Loginov, et al., “A Study of the Cyclonic and Anticyclonic Activity over Western Siberia using NCEP/DOE AMIP-II Reanalysis Data and Synoptic Maps,” Opt. Atmos. Okeana 22(1), 38–41 (2009).

    Google Scholar 

  37. V. P. Gorbatenko, I. I. Ippolitov, and N. V. Podnebesnykh, “Atmospheric Circulation over Western Siberia in 1976–2004,” Russ. Meteorol. Hydrol. 32(5), 301–306 (2007).

    Article  Google Scholar 

  38. V. P. Dymnikov and A. N. Filatov, Stability of Large-Scale Atmospheric Processes (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  39. A. R. Lupo, I. I. Mokhov, S. Dostoglou, et al., “Assessment of the Impact of the Planetary Scale on the Decay of Blocking and the Use of Phase Diagrams and Enstrophy as a Diagnostic,” Izv., Atmos. Ocean. Phys. 43(1), 45–51 (2007).

    Article  Google Scholar 

  40. M. A. Tolstykh, D. B. Kiktev, R. B. Zaripov, et al., “Simulation of the Seasonal Atmospheric Circulation with the New Version of the Semi-Lagrangian Atmospheric Model,” Izv., Atmos. Ocean. Phys. 46(2), 133–143 (2010).

    Article  Google Scholar 

  41. E. G. Klimova, N. V. Kilanova, O. A. Dubrovskaya, et al., “Investigation of Statistical Structure of Temperature Short-Range Forecast Errors in the Atmospheric Boundary Layer for the Purpose of Objective Analysis,” Russ. Meteorol. Hydrol. 35(9), 596–603 (2010).

    Article  Google Scholar 

  42. E. G. Klimova, “A Data Assimilation Technique Based on the π-Algorithm,” Russ. Meteorol. Hydrol. 33(3), 143–150 (2008).

    Article  Google Scholar 

  43. E. G. Klimova, “Data Assimilation Technique Based on the Ensemble π-Algorithm,” Russ. Meteorol. Hydrol. 33(9), 570–576 (2008).

    Article  Google Scholar 

  44. V. V. Penenko, “Variational Methods of Data Assimilation and Inverse Problems for Studying the Atmosphere, Ocean, and Environment,” Sib. Zh. Vychis. Mat. 12(4), 421–434 (2009).

    Google Scholar 

  45. I. I. Mokhov, M. G. Akperov, V. E. Lagun, et al., “Intense Arctic Mesocyclones,” Izv., Atmos. Ocean. Phys. 43(3), 259–265 (2007).

    Article  Google Scholar 

  46. G. S. Golitsyn, “Polar Lows and Tropical Hurricanes: Their Energy and Sizes and a Quantitative Criterion for Their Generation,” Izv., Atmos. Ocean. Phys. 44(5), 537–547 (2008).

    Article  Google Scholar 

  47. G. S. Golitsyn, “Tropical Cyclones and Polar Lows: Velocity, Size and Energy Scales, and Relation To the 26°C Cyclone Origin Criteria,” Adv. Atmos. Sci. 26(3), 585–598 (2009).

    Article  Google Scholar 

  48. K. Ishioka and S. Yoden, “Non-Linear Aspects of a Barotropically Unstable Polar Vortex in a Forced Dissipative System: Flow Regimes and Tracer Transport,” J. Meteor. Soc. Japan 73(2), 201–212 (1995).

    Google Scholar 

  49. S. V. Shagalov, V. P. Reutov, and G. V. Rybushkina, “Asymptotic Analysis of Transition to Turbulence and Chaotic Advection in Shear Zonal Flows on a Beta-Plane,” Izv., Atmos. Ocean. Phys. 46(1), 95–108 (2010).

    Article  Google Scholar 

  50. S. Zilitinkevich, V. M. Gryanik, and V. N. Lykossov, et al. “Third-Order Transport and Non-Local Turbulence Closures for Convective Boundary Layers,” J. Atmos. Sci. 56(19), 3463–3477 (1999).

    Article  Google Scholar 

  51. V. P. Kukharets, O. G. Nalbandyan, and A. V. Shmakov, “Transporting Passive Additives in a Turbulent Medium under Convective Mixing,” Izv., Atmos. Ocean. Phys. 45(4), 411–415 (2009).

    Article  Google Scholar 

  52. V. P. Gorbatenko and D. A. Konstantinova, “Convection in the Atmosphere over Southeastern West Siberia,” Opt. Atmos. Okeana 22(1), 17–21 (2009).

    Google Scholar 

  53. D. A. Konstantinova and V. P. Gorbatenko, “Conditions of Squall Generation over Southeastern West Siberia,” Vestn. Tomsk. Gos. Univ., No. 337, 189–193 (2010).

  54. L. G. Ananova, V. P. Gorbatenko, and I. A. Lukovskaya, “Radar Characteristics of Convective Clouds during Squalls in the Southeastern Part of Western Siberia,” Russ. Meteorol. Hydrol. 32(7), 449–452 (2007).

    Article  Google Scholar 

  55. A. E. Aloyan, “Modeling Aerosol Dynamics during Forest Fires,” Izv., Atmos. Ocean. Phys. 45(1), 55–68 (2009).

    Article  Google Scholar 

  56. N. E. Kadygrov, G. M. Kruchenitskii, and A. D. Lykov, “Quantitative Estimates of Disturbances Contributed by a Megalopolis to the Temperature Field of the Atmospheric Boundary Layer,” Izv., Atmos. Ocean. Phys. 43(1), 24–35 (2007).

    Article  Google Scholar 

  57. V. A. Shlychkov, T. S. Selegei, V. M. Mal’bakhov, et al., “Diagnosis of Extreme Formaldehyde Concentrations in Tomsk Based on Numerical Modeling,” Opt. Atmos. Okeana 23(6), 493–498 (2010).

    Google Scholar 

  58. V. V. Penenko, E. A. P’yanova, and A. V. Chernova, “Investigation of Processes of Mesoscale Transport of Admixtures using Eulerian and Lagrangian Models,” Opt. Atmos. Okeana 20(6), 484–490 (2007).

    Google Scholar 

  59. Yu. S. Balin, A. D. Ershov, I. E. Penner, et al., “Experimental and Model Investigations of Spatial Distribution of Atmospheric Aerosol over the Lake Baikal Basin,” Opt. Atmos. Okeana 20(2), 114–121 (2007).

    Google Scholar 

  60. V. L. Potemkin and V. L. Makukhin, “Pollution of Landscapes in the Lake Baikal Trough during Forest Fires,” Geogr. Prir. Resur., No. 4, 60–63 (2007).

  61. V. L. Potemkin and V. L. Makukhin, “Distribution of Atmospheric Trace Gases over Lake Baikal,” Geogr. Prir. Resur., No. 2, 80–84 (2008).

  62. A. F. Kurbatsky, “Countergradient Heat Transfer in the Atmospheric Boundary Layer over a Rough Surface,” Izv., Atmos. Ocean. Phys. 44(2), 160–166 (2008).

    Article  Google Scholar 

  63. G. N. Panin and Ch. Bernhofer, “Parametrization of Turbulent Fluxes over Inhomogeneous Landscapes,” Izv., Atmos. Ocean. Phys. 44(6), 701–716 (2008).

    Article  Google Scholar 

  64. A. V. Glazunov, “Large-Eddy Simulation of Turbulence with the Use of a Mixed Dynamic Localized Closure: Part 1. Formulation of the Problem, Model Description, and Diagnostic Numerical Tests,” Izv. Fizika Atmosfery I Okeana 45(1), 5–24 (2009).

    Google Scholar 

  65. A. V. Glazunov, “Large-Eddy Simulation of Turbulence with the Use of a Mixed Dynamic Localized Closure: Part 2. Numerical Experiments: Simulating Turbulence in a Channel with Rough Boundaries,” Izv., Atmos. Ocean. Phys. 45(1), 25–36 (2009).

    Article  Google Scholar 

  66. J. P. Johnston, R. M. Halleen, and D. K. Lezius, “Effects of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow,” J. Fluid Mech. 56, 533–557 (1972).

    Article  Google Scholar 

  67. O. Zhikanov, D. N. Slinn, and M. Dhanak, “Large-Eddy Simulations of the Wind-Induced Turbulent Ekman Layer,” J. Fluid Mech. 495, 343–368 (2003).

    Article  Google Scholar 

  68. A. V. Glazunov, “On the Effect that the Direction of Geostrophic Wind Has on Turbulence and Quasiordered Large-Scale Structures in the Atmospheric Boundary Layer,” Izv., Atmos. Ocean. Phys. 46(6), 727–747 (2010).

    Article  Google Scholar 

  69. S. Ya. Gertsenshtein, I. A. Palymskii, and I. N. Sibgatullin, “Intense Turbulent Convection in a Horizontal Plane Liquid Layer,” Izv., Atmos. Ocean. Phys. 44(1), 72–82 (2008).

    Google Scholar 

  70. M. D. Powell, P. J. Vickery, and T. A. Reinhold, “Reduced Drag Coefficient for High Wind Speeds in Tropical Cyclones,” Nature 422, 279–283 (2003).

    Article  Google Scholar 

  71. V. Kudryavtsev and V. Makin, “Aerodynamic Roughness of the Sea Surface at High Winds,” Boundary-Layer Meteorol. 125,(2), 289–303 (2007).

    Article  Google Scholar 

  72. V. N. Lykossov, “Atmospheric and Oceanic Boundary Layer Physics,” in Wind Stress over the Ocean, Ed. by Ian S. F. Jones and Yoshiaki Toba (Cambridge Univ. Press, Cambridge, 2001), pp. 54–81.

    Chapter  Google Scholar 

  73. E. L. Andreas, “Spray Stress Revisited,” J. Phys. Oceanogr. 34(6), 1429–1440 (2004).

    Article  Google Scholar 

  74. Yu. I. Troitskaya and G. V. Rybushkina, “Quasi-Linear Model of Interaction of Surface Waves with Strong and Hurricane Winds,” Izv., Atmos. Ocean. Phys. 44(5), 621–645 (2008).

    Article  Google Scholar 

  75. G. I. Barenblatt and G. S. Golitsyn, “Local Structure of Mature Dust Storms,” J. Atmos. Sci. 31(7), 1917–1933 (1974).

    Article  Google Scholar 

  76. E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, “Air Dynamics near the Soil Surface and Convective Emission of Aerosol,” Izv., Atmos. Ocean. Phys. 46(1), 29–40 (2010).

    Article  Google Scholar 

  77. A. F. Kurbatsky and L. I. Kurbatskaya, “Features of Turbulent Momentum and Heat Transfer in a Stably Stratified Boundary Layer over a Rough Surface,” Izv., Atmos. Ocean. Phys. 44(6), 729–738 (2008).

    Article  Google Scholar 

  78. A. F. Kurbatskiy and L. I. Kurbatskaya, “E — ɛ — <θ2> Turbulence Closure Model for An Atmospheric Boundary Layer Including the Urban Canopy,” Meteorol. Atmos. Phys. 104(1–2), 63–81 (2009).

    Article  Google Scholar 

  79. A. F. Kurbatskii and L. I. Kurbatskaya, “On the Turbulent Prandtl Number in a Stably Stratified Atmospheric Boundary Layer,” Izv., Atmos. Ocean. Phys. 46(2), 169–177 (2010).

    Article  Google Scholar 

  80. V. P. Dymnikov and A. N. Filatov, Mathematics of Climate Modeling (Birkhauser, Boston, 1997).

    Google Scholar 

  81. V. P. Dymnikov and A. S. Gritsun, “Current Problems in the Mathematical Theory of Climate,” Izv., Atmos. Ocean. Phys. 41(3), 266–284 (2005).

    Google Scholar 

  82. A. S. Gritsun and G. Branstator, “Climate Response Using a Three-Dimensional Operator Based on the Fluctuation-Dissipation Theorem,” J. Atmos. Sci. 64(7), 2558–2575 (2007).

    Article  Google Scholar 

  83. A. S. Gritsun, G. Branstator, and A. Majda, “Climate Response of Linear and Quadratic Functionals Using the Fluctuation-Dissipation Theorem,” J. Atmos. Sci. 65(9), 2824–2841 (2008).

    Article  Google Scholar 

  84. A. J. Majda and X. Wang, “Linear Response Theory for Statistical Ensembles in Complex Systems with Time-Periodic Forcing,” Commun. Math. Sci. 8(1), 145–172 (2010).

    Google Scholar 

  85. V. P. Dymnikov and A. S. Gritsun, “Pairing Property of Global Lyapunov Exponents for Models of Atmospheric Dynamics,” Izv., Atmos. Ocean. Phys. 37(3), 269–274 (2001).

    Google Scholar 

  86. A. S. Gritsun, “Unstable Periodic Trajectories of a Barotropic Model of the Atmosphere,” Russ. J. Numer. Anal. Math. Modell. 23(4), 345–367 (2008).

    Article  Google Scholar 

  87. A. S. Gritsun, “Statistical Characteristics of Barotropic Atmospheric System and Its Unstable Periodic Solutions,” Dokl. Earth Sci. 435(2), 1688–1691 (2010).

    Article  Google Scholar 

  88. A. S. Gritsun, “Construction of Response Operators to Small External Forcings for Atmospheric General Circulation Models with Time Periodic Right-Hand Sides,” Izv., Atmos. Ocean. Phys. 46(6), 748–756 (2010).

    Article  Google Scholar 

  89. A. S. Gritsun, “Unstable Periodic Orbits and Sensitivity of the Barotropic Model of the Atmosphere,” Russ. J. Numer. Anal. Math. Modell. 25(4), 303–321 (2010).

    Article  Google Scholar 

  90. V. V. Penenko and E. A. Tsvetova, “Mathematical Models of Environmental Forecasting,” J. Appl. Mech. Tech. Phys. 48(3), 428–436 (2007).

    Article  Google Scholar 

  91. V. Penenko and E. Tsvetova, “Orthogonal Decomposition Methods for Inclusion of Climatic Data Into Environmental Studies,” Ecol. Modell. 217(3–4), 279–291 (2008).

    Article  Google Scholar 

  92. V. V. Penenko, “On the Concept of Environmental Forecasting,” Opt. Atmos. Okeana 23(6), 432–438 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Lykosov.

Additional information

Original Russian Text © V.N. Lykosov, V.N. Krupchatnikov, 2012, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2012, Vol. 48, No. 3, pp. 284–303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lykosov, V.N., Krupchatnikov, V.N. Some directions in the development of dynamic meteorology in Russia in 2007–2010. Izv. Atmos. Ocean. Phys. 48, 255–271 (2012). https://doi.org/10.1134/S0001433812030073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433812030073

Keywords

Navigation