Skip to main content
Log in

Evolution of a langmuir wave in a weakly inhomogeneous plasma with a positive concentration gradient

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Spatial evolution of a Langmuir wave excited by external sources in a weakly inhomogeneous electron plasma without external sources is considered for a small positive gradient of the plasma concentration in the direction of propagation of the wave. At the first state of the evolution, the dispersion of the wave is close to linear. When the phase velocity is doubled, the second stage of the evolution begins. The wave loses its individuality and becomes a hybrid of two waves. Its profile acquires the shape of an alternating sequence of fragments of these waves. The wave dispersion is determined by the dispersion of each fragment. In the course of evolution, the spacing between the equilibrium values of the wave fragments increases; as a result, the wave decays into two waves, which are also loaded by trapped electrons. Prior to decay, the humps of the wave become steeper; as a result, at the instant of the decay, the wave is transformed into a sequence of solitons with different polarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Krasovskii, Zh. Éksp. Teor. Fiz. 107, 741 (1995) [JETP 80, 420 (1995)].

    Google Scholar 

  2. V. I. Karpman and D. R. Shklyar, Zh. Éksp. Teor. Fiz. 67, 103 (1975) [Sov. Phys. JETP 40, 53 (1975)].

    ADS  Google Scholar 

  3. Ya. I. Istomin, V. I. Karpman, and D. R. Shklyar, Zh. Éksp. Teor. Fiz. 64, 2072 (1973) [Sov. Phys. JETP 37, 1045 (1973)].

    Google Scholar 

  4. E. Asseo, G. Laval, R. Pellat, and A. Roux, J. Plasma Phys. 8, 341 (1972).

    Google Scholar 

  5. G. Laval and R. Pellat, J. Geophys. Res. 75, 3255 (1970).

    Google Scholar 

  6. N. S. Erokhin, N. N. Zol’nikova, V. L. Krasovskii, et al., Zh. Éksp. Teor. Fiz. 100, 832 (1991) [Sov. Phys. JETP 73, 460 (1991)].

    ADS  Google Scholar 

  7. V. S. Beskin, A. V. Gurevich, and Ya. I. Istomin, Zh. Éksp. Teor. Fiz. 92, 1277 (1987) [Sov. Phys. JETP 65, 715 (1987)].

    ADS  Google Scholar 

  8. V. I. Karpman and D. R. Shklyar, Zh. Éksp. Teor. Fiz. 62, 944 (1972) [Sov. Phys. JETP 35, 500 (1972)].

    Google Scholar 

  9. V. P. Milant’ev, Zh. Éksp. Teor. Fiz. 85, 132 (1983) [Sov. Phys. JETP 58, 78 (1983)].

    ADS  Google Scholar 

  10. Yu. A. Gurevich, Zh. Éksp. Teor. Fiz. 53, 925 (1967) [Sov. Phys. JETP 26, 560 (1968)].

    Google Scholar 

  11. A. S. Bakai and Yu. P. Stepanovskii, Adiabatic Invariants (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  12. V. Ya. Davydovskii and A. I. Matveev, Fiz. Plazmy 11, 1368 (1985) [Sov. J. Plasma Phys. 11, 784 (1985)].

    Google Scholar 

  13. A. S. Bakai, Vopr. At. Nauki Tekh., Ser.: KhFTI (1976).

  14. V. Ya. Davydovskii and A. I. Matveev, Fiz. Plazmy 13, 443 (1987) [Sov. J. Plasma Phys. 13, 251 (1987)].

    Google Scholar 

  15. L. A. Artsimovich and R. Z. Sagdeev, Plasma Physics for Physicists (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 2nd ed. (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 2nd ed. (Nauka, Moscow, 1963; Pergamon, Oxford, 1965).

    Google Scholar 

  18. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Elementary Functions (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986).

    Google Scholar 

  19. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, et al., Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon, New York, 1975).

    Google Scholar 

  20. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  21. B. B. Kadomtsev, Collective Phenomena in a Plasma (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  22. A. V. Timofeev, Zh. Éksp. Teor. Fiz. 75, 1303 (1978) [Sov. Phys. JETP 48, 656 (1978)].

    Google Scholar 

  23. V. Ya. Davydovskii and A. I. Matveev, Zh. Tekh. Fiz. 53, 2125 (1983) [Sov. Phys. Tech. Phys. 28, 1302 (1983)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 128, No. 5, 2005, pp. 1085–1098.

Original Russian Text Copyright © 2005 by Matveev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveev, A.I. Evolution of a langmuir wave in a weakly inhomogeneous plasma with a positive concentration gradient. J. Exp. Theor. Phys. 101, 949–961 (2005). https://doi.org/10.1134/1.2149074

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2149074

Keywords

Navigation