Skip to main content
Log in

Surface states at the nanoparticle-polymer matrix interface

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The energy barriers for hole injection in polymeric nanocomposites representing a poly(p-xylylene) (PPX) matrix containing dispersed lead or iron nanoparticles were determined by means of photoconductivity spectroscopy. The barriers for hole injection from metal particles in nanocomposites measured in vacuum are 3.6 eV for iron and 3.0 eV for lead; upon oxygen admission, these values decrease to ∼3.2 and ∼2.75 eV, respectively. A shift between the vacuum energy levels of PPX and metal nanoparticles amounts to 1.0 and 0.1 eV for iron and lead, respectively. The greater value for iron suggests the formation of a surface electric dipole, probably as a result of the chemical interaction at the metal nanoparticle-matrix interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Forrest, Chem. Rev. 97, 1793 (1997).

    Article  Google Scholar 

  2. C. Kergueris, J.-P. Bourgoin, S. Palacin, et al., Phys. Rev. B 59, 12505 (1999).

  3. D. V. Averin and K. K. Likharev, Mesoscopic Phenomena in Solids, Ed. by B. L. Altshulrs, P. A. Zee, and R. A. Webb (Elsevier, Amsterdam, 1991), p. 173.

    Google Scholar 

  4. M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).

    Article  ADS  Google Scholar 

  5. Nanotechnology Research Directions: Working Group on Nanoscience, Engineering and Technology (IWGN) Workshop Report, Ed. by M. C. Roco, R. S. Williams, and P. Alivisatos (Kluwer, Dordrecht, 2000).

    Google Scholar 

  6. N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).

    Google Scholar 

  7. J. C. Winiarz, L. Zhang, M. Lal, et al., Chem. Phys. 245, 417 (1999).

    Article  Google Scholar 

  8. S.-H. Yu, M. Yoshimura, J. M. C. Moreno, et al., Langmuir 17, 1700 (2001).

    Google Scholar 

  9. E. I. Grigor’ev, P. S. Vorontsov, S. A. Zav’yalov, and S. N. Chvalun, Pis’ma Zh. Tekh. Fiz. 28(20), 15 (2002) [Tech. Phys. Lett. 28, 845 (2002)].

    Google Scholar 

  10. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).

    Article  Google Scholar 

  11. R. Monch, Surf. Sci. 299–300, 928 (1994).

    Google Scholar 

  12. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000).

    Article  Google Scholar 

  13. G. Greczynski, T. Kugler, and W. R. Salanek, Curr. Appl. Phys. 1, 98 (2001).

    Article  Google Scholar 

  14. E. N. Nikolaeva, S. A. Ozerin, E. I. Grigoriev, et al., Mater. Sci. Eng. C 8–9, 217 (1999).

    Google Scholar 

  15. G. N. Gerasimov, A. E. Grigor’ev, and E. I. Grigor’ev, Khim. Fiz. 17(6), 180 (1998).

    Google Scholar 

  16. Y. Takai, A. Kurachi, T. Mizutani, et al., J. Phys. D 15, 917 (1982).

    Article  ADS  Google Scholar 

  17. Physical Quantities. Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991).

    Google Scholar 

  18. X. Crispin, V. Geskin, A. Crispin, et al., J. Am. Chem. Soc. 124, 8131 (2002).

    Article  Google Scholar 

  19. K. M. Vaeth and K. F. Jensen, Chem. Mater. 12, 1305 (2000).

    Article  Google Scholar 

  20. T. Mizutani, Y. Takai, T. Osawa, et al., J. Phys. D 9, 2253 (1976).

    Article  ADS  Google Scholar 

  21. Y. Takai, K. Ishii, T. Mizutani, et al., J. Phys. D 12, 601 (1979).

    ADS  Google Scholar 

  22. Y. Takai, M. Kobayashi, T. Mizutani, et al., J. Phys. D 21, 1151 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 30, No. 8, 2004, pp. 40–45.

Original Russian Text Copyright © 2004 by Grigor’ev, Zav’yalov, Chvalun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigor’ev, E.I., Zav’yalov, S.A. & Chvalun, S.N. Surface states at the nanoparticle-polymer matrix interface. Tech. Phys. Lett. 30, 322–324 (2004). https://doi.org/10.1134/1.1748613

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1748613

Keywords

Navigation