Skip to main content
Log in

Experimental determination of the conditions for the transition of Jupiter’s atmosphere to the conducting state

  • Gravity, Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The intensity of optical radiation and resistance of a hydrogen-helium layer with He mass fraction Y=m He/(m He+m H)≅0.24, which corresponds to the composition of the outer layers of Jupiter’s atmosphere [2], were simultaneously measured under multiple shock compression up to 164 GPa in plane geometry. The initial pressure and temperature of the mixture were equal to 8 MPa and 77.4 K, respectively, and the velocity of steel strikers was equal to 6.2 km/s. These conditions allowed the generation of the final compressed curve close to the adiabatic states of Jupiter’s atmosphere according to the models proposed in [2, 3]. The conditions for the appearance of the conducting phase in the compression process and the achieved level of electrical conductivity were determined. The experimental data were compared with the one-dimensional fluid-dynamic simulation of the compression process using the equation of state for the mixture in a model similar to the one proposed in [3, 8]. The experimental data were also compared with the behavior of pure components having the same initial density as in the mixture and compressed to the same final pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Von Zahn, D. M. Hunten, and G. Lehmacher, J. Geophys. Res. 103, 22815 (1998).

    Google Scholar 

  2. T. V. Gudkova and V. N. Zharkov, Planet. Space Sci. 47, 1201 (1999).

    ADS  Google Scholar 

  3. D. Saumon, G. Chabrier, and H. M. Van Horn, Astrophys. J., Suppl. Ser. 99, 713 (1995).

    Article  ADS  Google Scholar 

  4. W. J. Nellis, Planet. Space Sci. 48, 671 (2000); S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  ADS  Google Scholar 

  5. V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 874 (1999) [JETP Lett. 69, 926 (1999)]; V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, et al., Physica B (Amsterdam) 265, 6 (1999).

    Google Scholar 

  6. G. W. Collins, P. M. Celliers, D. M. Gold, et al., Contrib. Plasma Phys. 39, 13 (1999).

    Google Scholar 

  7. V. E. Fortov, V. Ya. Ternovoi, M. V. Zhernokletov, et al., Zh. Éksp. Teor. Fiz. 124, 288 (2003) [JETP 97, 259 (2003)].

    Google Scholar 

  8. H. Juranek and R. Redmer, J. Chem. Phys. 112, 3780 (2000).

    Article  ADS  Google Scholar 

  9. W. J. Nellis, N. C. Holmes, A. C. Mitchell, et al., Phys. Rev. Lett. 53, 1248 (1984).

    ADS  Google Scholar 

  10. R. Gengenbach, J. Strunck, and J. Toennies, J. Chem. Phys. 54, 1830 (1971).

    Article  Google Scholar 

  11. F. H. Ree, in Shock Waves in Condensed Matter, 1987, Ed. by S. C. Schmidt and N. C. Holmes (Elsevier, Amsterdam, 1988), p. 125.

    Google Scholar 

  12. M. Ross, J. Chem. Phys. 86, 7110 (1987).

    Article  ADS  Google Scholar 

  13. W. B. Hubbard, T. Guillot, M. S. Marley, et al., Planet. Space Sci. 47, 1175 (1999).

    Article  ADS  Google Scholar 

  14. R. S. Hawke, A. C. Mitchell, and R. N. Keeler, Rev. Sci. Instrum. 40, 632 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 79, No. 1, 2004, pp. 8–11.

Original Russian Text Copyright © 2004 by Ternovo\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Kvitov, Pyalling, Filimonov, Fortov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ternovoi, V.Y., Kvitov, S.V., Pyalling, A.A. et al. Experimental determination of the conditions for the transition of Jupiter’s atmosphere to the conducting state. Jetp Lett. 79, 6–9 (2004). https://doi.org/10.1134/1.1675910

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1675910

PACS numbers

Navigation