Skip to main content
Log in

The influence of imperfection of the crystal lattice on the electrokinetic and magnetic properties of disordered titanium monoxide

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The conductivity and magnetic susceptibility of disordered titanium monoxide TiOy (0.920≤y≤1.262) containing vacancies in titanium and oxygen sublattices are investigated. For TiOy monoxides with an oxygen content y≤1.069, the temperature dependences of the conductivity are described by the Bloch-Grüneisen function at a Debye temperature ranging from 400 to 480 K and the temperature dependences of the magnetic susceptibility are characterized by the contribution from the Pauli paramagnetism due to conduction electrons. The behavior of the conductivity and magnetic susceptibility of TiOy monoxides with an oxygen content y≥1.087 is characteristic of narrow-gap semiconductors with nondegenerate charge carriers governed by the Boltzmann statistics. The band gap ΔE between the valence and conduction bands of TiOy monoxides with y≥1.087 falls in the range 0.06–0.17 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev and A. A. Rempel’, Nonstoichiometry, Disorder, and Order in Solids (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2001).

    Google Scholar 

  2. D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Malin, Nature 210(5039), 934 (1966); Acta Crystallogr. 23 (2), 307 (1967).

    Google Scholar 

  3. E. Hilti and F. Laves, Naturwissenschaften 55(3), 131 (1968).

    Google Scholar 

  4. D. Watanabe, O. Terasaki, A. Jostsons, and J. R. Castles, in The Chemistry of Extended Defects in Non-Metallic Solids, Ed. by L. Eyring and M. O. Keeffe (North-Holland, Amsterdam, 1970), p. 238.

    Google Scholar 

  5. A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, Pis’ma Zh. Éksp. Teor. Fiz. 71(11), 675 (2000) [JETP Lett. 71, 460 (2000)].

    Google Scholar 

  6. A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, Neorg. Mater. 37(6), 716 (2001).

    Google Scholar 

  7. E. Hilti, Naturwissenschaften 55(3), 130 (1968).

    Google Scholar 

  8. A. I. Gusev, Pis’ma Zh. Éksp. Teor. Fiz. 74(2), 96 (2001) [JETP Lett. 74, 91 (2001)].

    Google Scholar 

  9. A. D. Pearson, J. Phys. Chem. Solids 5(4), 316 (1958).

    MathSciNet  Google Scholar 

  10. S. P. Denker, J. Appl. Phys. 37(1), 142 (1966).

    Article  Google Scholar 

  11. M. I. Aivazov, I. A. Domashnev, A. G. Sarkisyan, and T. V. Rezchikova, Izv. Akad. Nauk SSSR, Neorg. Mater. 6(4), 745 (1970).

    Google Scholar 

  12. M. D. Banus, T. B. Reed, and A. J. Strauss, Phys. Rev. B 5(8), 2775 (1972).

    Article  ADS  Google Scholar 

  13. M. Schoen and S. P. Denker, Phys. Rev. 184(3), 864 (1969).

    ADS  Google Scholar 

  14. L. F. Mattheis, Phys. Rev. B 5(2), 290 (1972).

    ADS  Google Scholar 

  15. A. Neckel, P. Rastl, R. Eibler, et al., J. Phys. C: Solid State Phys. 9(4), 579 (1976).

    ADS  Google Scholar 

  16. A. Neckel, Int. J. Quantum Chem. 23(4), 1317 (1983).

    Article  Google Scholar 

  17. L. M. Huisman, A. E. Carlsson, C. D. Gellat, and H. Ehrenreich, Phys. Rev. B 22(2), 991 (1980).

    Article  ADS  Google Scholar 

  18. V. A. Gubanov, A. L. Ivanovsky, G. P. Shvelkin, and D. E. Ellis, J. Phys. Chem. Solids 45(7), 719 (1984).

    Google Scholar 

  19. A. L. Ivanovsky, V. I. Anisimov, D. L. Novikov, et al., J. Phys. Chem. Solids 49(5), 465 (1988).

    Google Scholar 

  20. S. R. Barman and D. D. Sarma, Phys. Rev. B 49(23), 16141 (1994).

  21. C. Leung, M. Weinert, P. B. Allen, and R. M. Wentzcovitch, Phys. Rev. B 54(11), 7857 (1996).

    Article  ADS  Google Scholar 

  22. G. K. Wertheim and D. N. E. Buchanan, Phys. Rev. B 17(6), 2780 (1978).

    Article  ADS  Google Scholar 

  23. S. Gokhale, S. R. Barman, and D. D. Sarma, Phys. Rev. B 52(20), 14526 (1995).

    Google Scholar 

  24. D. R. Jennison and A. B. Kunz, Phys. Rev. Lett. 39(7), 418 (1977).

    Article  ADS  Google Scholar 

  25. J. K. Burdett and T. Hughbanks, J. Am. Chem. Soc. 106(11), 3101 (1984).

    Article  Google Scholar 

  26. G. Hobiger, P. Herzig, F. Schlapansky, and A. Neckel, J. Phys.: Condens. Matter 2(20), 4595 (1990).

    Article  ADS  Google Scholar 

  27. K. Tsutsumi, O. Aita, and K. Ichikawa, Phys. Rev. B 15(10), 4638 (1977).

    Article  ADS  Google Scholar 

  28. S. Bartkowski, M. Neumann, E. Z. Kurmaev, et al., Phys. Rev. B 56(16), 10656 (1977).

  29. I. M. Tsidilkovski, Gapless Semiconductors-A New Class of Materials (Nauka, Moscow, 1986).

    Google Scholar 

  30. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 1st ed. (Clarendon, Oxford, 1971; Mir, Moscow, 1974).

    Google Scholar 

  31. N. F. Mott, Electrons in Disordered Structures (Cambridge, 1967; Mir, Moscow, 1969), Adv. Phys. 16 (61), 49 (1967).

  32. N. F. Mott, Metal-Insulator Transitions (Taylor and Fransic, London, 1974; Nauka, Moscow, 1979).

    Google Scholar 

  33. C. Kittel, Introduction to Solid State Physics, 7th ed. (Nauka, Moscow, 1978; Wiley, New York, 1996), p. 284.

    Google Scholar 

  34. I. M. Tsidilkovski, Electron Spectrum of Gapless Semiconductors (Akad. Nauk SSSR, Sverdlovsk, 1991; Springer-Verlag, Berlin, 1997), Springer Series in Solid-State Sciences, Vol. 116.

    Google Scholar 

  35. A. A. Valeeva, G. Tang, A. I. Gusev, and A. A. Rempel’, Fiz. Tverd. Tela (St. Petersburg) 45(1), 84 (2003) [Phys. Solid State 45, 87 (2003)].

    Google Scholar 

  36. A. I. Gusev, A. A. Rempel, and A. A. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides, and Oxides (Springer, Berlin, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 7, 2003, pp. 1185–1192.

Original Russian Text Copyright © 2003 by Gusev, Valeeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, A.I., Valeeva, A.A. The influence of imperfection of the crystal lattice on the electrokinetic and magnetic properties of disordered titanium monoxide. Phys. Solid State 45, 1242–1250 (2003). https://doi.org/10.1134/1.1594236

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1594236

Keywords

Navigation