Skip to main content
Log in

Structural instabilities, incommensurate modulations and P and Q phases in sodium niobate in the temperature range 300–500 K

  • Lattice Dynamics and Phase Transitions
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The relation between the phase transition in the vicinity of 420 K discovered earlier and the formation of an incommensurate phase in the temperature range 410–460 K is established based on the X-ray, dielectric, and dilatometric studies of sodium niobate (NaNbO3) single crystals and ceramics. It is also established that this phase is characterized by temperature and temporal instabilities. Anomalies in some physical characteristics in the vicinity of 350 K are revealed. It is also shown that the thermodynamic history of the samples is important for the coexistence of the regions of the ferroelectric Q and antiferroelectric P phases in NaNbO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Raevskii, L. A. Reznichenko, V. G. Smotrakov, et al., Pis’ma Zh. Tekh. Fiz. 26(16), 97 (2000) [Tech. Phys. Lett. 26, 744 (2000)].

    Google Scholar 

  2. H. D. Megaw, Ferroelectrics 7(1–4), 87 (1974).

    Google Scholar 

  3. I. Lefkowitz, K. Lukaszewicz, and H. D. Megaw, Acta Crystallogr. 20, 670 (1966).

    Article  Google Scholar 

  4. N. N. Krainik, Fiz. Tverd. Tela (Leningrad) 2, 685 (1960) [Sov. Phys. Solid State 2, 633 (1960)].

    Google Scholar 

  5. L. Pardo, P. Duran-Martin, J. P. Mercurio, et al., J. Phys. Chem. Solids 58, 1335 (1997).

    Google Scholar 

  6. K. Konieczny, Mater. Sci. Eng. B 60, 124 (1999).

    Article  Google Scholar 

  7. A. Molak, M. Pawelczyk, and J. Kwapulinski, J. Phys.: Condens. Matter 6, 6833 (1994).

    Article  ADS  Google Scholar 

  8. S. Miga, J. Dec, and M. Pawelczyk, J. Phys.: Condens. Matter 8, 8413 (1996).

    Article  ADS  Google Scholar 

  9. V. A. Isupov, Izv. Akad. Nauk SSSR, Ser. Fiz. 22(12), 1504 (1958).

    Google Scholar 

  10. L. A. Shilkina, L. A. Reznichenko, M. F. Kupriyanov, and E. G. Fesenko, Zh. Tekh. Fiz. 47(10), 2173 (1977) [Sov. Phys. Tech. Phys. 22, 1262 (1977)].

    Google Scholar 

  11. X. B. Wang, Z. X. Shen, Z. P. Hu, et al., J. Mol. Struct. 385, 1 (1996).

    Article  Google Scholar 

  12. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, A. I. Sokolov, and N. K. Yushin, Physics of Ferroelectric Phenomena (Nauka, Leningrad, 1985).

    Google Scholar 

  13. V. G. Smotrakov, I. P. Raevskii, M. A. Malitskaya, et al., Neorg. Mater. 16(5), 1065 (1980).

    Google Scholar 

  14. E. A. Dul’kin and I. P. Raevski, Ferroelectrics 239(1–4), 381 (2000).

    Google Scholar 

  15. L. E. Cross and B. J. Nicholson, Philos. Mag. 46, 453 (1956).

    Google Scholar 

  16. E. G. Fesenko, V. S. Filip’ev, and M. F. Kupriyanov, Fiz. Tverd. Tela (Leningrad) 11(2), 66 (1969) [Sov. Phys. Solid State 11, 366 (1969)].

    Google Scholar 

  17. V. V. Kochetkov, N. A. Zakharov, S. Yu. Stefanovich, and Yu. N. Venevtsev, Kristallografiya 24(5), 1066 (1979) [Sov. Phys. Crystallogr. 24, 610 (1979)].

    Google Scholar 

  18. K. Ohi, M. Kimura, H. Ishida, and H. Kakinuma, J. Phys. Soc. Jpn. 49(4), 1387 (1979).

    Google Scholar 

  19. N. Yamamoto, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 38, 780 (1982).

    Google Scholar 

  20. N. A. Zakharov, V. P. Orlovskii, and V. A. Klyuev, Izv. Ross. Akad. Nauk, Ser. Fiz. 60(10), 85 (1996).

    Google Scholar 

  21. V. A. Chernyshkov, Candidate’s Dissertation in Physics and Mathematics (Rostov State Univ., Rostov-on-Don, 1990).

    Google Scholar 

  22. A. Kania and J. Kwapulinski, J. Phys.: Condens. Matter 11, 8933 (1999).

    Article  ADS  Google Scholar 

  23. O. A. Zhelnova and O. E. Fesenko, Fiz. Tverd. Tela (Leningrad) 27(1), 8 (1985) [Sov. Phys. Solid State 27, 4 (1985)].

    Google Scholar 

  24. V. Yu. Topolov, L. E. Balyunis, A. V. Turik, and O. E. Fesenko, Kristallografiya 35(3), 755 (1990) [Sov. Phys. Crystallogr. 35, 441 (1990)].

    Google Scholar 

  25. L. A. Reznichenko, A. V. Turik, E. M. Kuznetsova, and V. P. Sakhnenko, J. Phys.: Condens. Matter 13, 3875 (2001).

    ADS  Google Scholar 

  26. J. Chen and D. Feng, Phys. Status Solidi A 109, 171 (1988).

    Google Scholar 

  27. C. N. W. Darlington and K. S. Knight, Physica B (Amsterdam) 266, 368 (1999).

    ADS  Google Scholar 

  28. L. A. Reznichenko, L. A. Shilkina, S. V. Titov, et al., in Proceedings of International Symposium on Odering in Minerals and Alloys, OMA-2000 (Rostov-on-Don, 2000), p. 111.

  29. C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry (Cambridge Univ. Press, Cambridge, 1986; Nauka, Novosibirsk, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 48, No. 3, 2003, pp. 493–501.

Original Russian Text Copyright © 2003 by Reznichenko, Shilkina, Gagarina, Raevski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Dul’kin, Kuznetsova, Akhnazarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznichenko, L.A., Shilkina, L.A., Gagarina, E.S. et al. Structural instabilities, incommensurate modulations and P and Q phases in sodium niobate in the temperature range 300–500 K. Crystallogr. Rep. 48, 448–456 (2003). https://doi.org/10.1134/1.1578130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1578130

Keywords

Navigation