Skip to main content
Log in

The structural features of wave collapse in medium with normal group velocity dispersion

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamic characteristics of self-action in three-dimensional wave packets described by the nonlinear Schrödinger equation with a hyperbolic space operator were studied analytically and numerically. The class of the initial wave field distributions for which self-focusing effects predominated over dispersion spreading and caused the arising of wave collapses was considered. The collapse of tubular wave packets was shown to be accompanied by packet shape changes during its contraction to the axis of the system. The nonlinear stabilization of collapses resulted in wave field fragmentation in the longitudinal direction followed by the expansion of the bunches thus formed along the axis. The dynamics of collapses was numerically studied taking into account medium nonlinearity saturation and nonlinear dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Litvak and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 10, 539 (1967).

    Google Scholar 

  2. N. A. Zharova, A. G. Litvak, T. A. Petrova, et al., Pis’ma Zh. Éksp. Teor. Fiz. 44, 12 (1986) [JETP Lett. 44, 13 (1986)]; Izv. Vyssh. Uchebn. Zaved., Radiofiz. 29, 1137 (1986).

    Google Scholar 

  3. J. E. Rothenberg, Opt. Lett. 17, 583 (1992); P. Chernev and V. Petrov, Opt. Lett. 17, 172 (1992); Opt. Commun. 87, 28 (1992).

    ADS  Google Scholar 

  4. J. E. Ranka, R. W. Schrimer, and A. L. Gaeta, Phys. Rev. Lett. 77, 3783 (1996).

    Article  ADS  Google Scholar 

  5. A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, Phys. Rev. Lett. 82, 1430 (1999); A. A. Zozulya, S. A. Diddams, and T. S. Clement, Phys. Rev. A 58, 3303 (1998).

    Article  ADS  Google Scholar 

  6. G. G. Luther, A. C. Newell, and J. V. Moloney, Physica A (Amsterdam) 49, 4085 (1994); G. G. Luther, A. C. Newell, J. V. Moloney, et al., Opt. Lett. 19, 789 (1994); Opt. Lett. 19, 862 (1994).

    Google Scholar 

  7. L. Berge and J. J. Rasmussen, Phys. Plasmas 3, 824 (1996); L. Berge, J. J. Rasmussen, E. A. Kuznetsov, et al., J. Opt. Soc. Am. B 13, 1879 (1996); L. Berge, E. A. Kuznetsov, and J. J. Rasmussen, Phys. Rev. E 53, R1340 (1996); G. Fibich, V. M. Malkin, and G. C. Papanicolaou, Phys. Rev. A 52, 4218 (1995); K. Germaschevski, B. Grauer, L. Berge, et al., Physica D (Amsterdam) 151, 175 (2001).

    ADS  Google Scholar 

  8. A. Brouder and S. I. Chin, Phys. Rev. Lett. 80, 4406 (1998).

    ADS  Google Scholar 

  9. N. N. Rozanov, Zh. Éksp. Teor. Fiz. 113, 513 (1998) [JETP 86, 284 (1998)].

    Google Scholar 

  10. A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovskii, Fiz. Plazmy 9, 495 (1983) [Sov. J. Plasma Phys. 9, 287 (1983)]; A. G. Litvak, A. M. Sergeev, and N. A. Shakhova, Pis’ma Zh. Tekh. Fiz. 5, 862 (1979) [Sov. Tech. Phys. Lett. 5, 33 (1979)].

    Google Scholar 

  11. J. R. Myra and C. S. Liu, Phys. Fluids 23, 2258 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  12. I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Phys. Rev. Lett. 84, 3847 (2000).

    Article  ADS  Google Scholar 

  13. A. G. Litvak, V. A. Mironov, and É. M. Sher, Zh. Éksp. Teor. Fiz. 118, 1463 (2000) [JETP 91, 1268 (2000)]; A. G. Litvak, V. A. Mironov, and E. V. Sher, Phys. Rev. E 61, 891 (2000).

    Google Scholar 

  14. N. A. Zharova, A. G. Litvak, and V. A. Mironov, Pis’ma Zh. Éksp. Teor. Fiz. 75, 655 (2002) [JETP Lett. 75, 539 (2002)].

    Google Scholar 

  15. S. N. Vlasov, L. V. Piskunova, and V. I. Talanov, Zh. Éksp. Teor. Fiz. 95, 1945 (1989) [Sov. Phys. JETP 68, 1125 (1989)]; S. N. Vlasov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42, 468 (1999).

    ADS  Google Scholar 

  16. V. E. Zakharov, N. E. Kosmatov, and V. F. Shvets, Pis’ma Zh. Éksp. Teor. Fiz. 49, 431 (1989) [JETP Lett. 49, 492 (1989)]; V. M. Malkin, Pis’ma Zh. Éksp. Teor. Fiz. 48, 603 (1988) [JETP Lett. 48, 653 (1988)].

    ADS  Google Scholar 

  17. S. N. Vlasov and V. I. Talanov, Wave Self-Focusing (Inst. Prikl. Fiz. Ross. Akad. Nauk, Nizhni Novgorod, 1997); N. N. Rozanov, N. V. Vysotina, and A. G. Vladimirov, Zh. Éksp. Teor. Fiz. 118, 1307 (2000) [JETP 91, 1130 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 4, 2003, pp. 726–737.

Original Russian Text Copyright © 2003 by Zharova, Litvak, Mironov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zharova, N.A., Litvak, A.G. & Mironov, V.A. The structural features of wave collapse in medium with normal group velocity dispersion. J. Exp. Theor. Phys. 96, 643–652 (2003). https://doi.org/10.1134/1.1574537

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1574537

Keywords

Navigation