Skip to main content
Log in

Kinetic approach for describing the fatigue effect in ferroelectrics

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A new kinetic approach is proposed for explaining the fatigue effect in ferroelectrics. A self-consistent variation in the area and geometry of the switching region of a sample upon a cyclic switching accompanied by the formation and growth of kinetically frozen domains is considered. It is assumed that fatigue is due to self-organized formation of a spatially inhomogeneous internal bias field due to retardation of bulk screening of the depolarization field. Variations in the switching charge and in the amplitude of switching current, which are calculated with the help of computer simulation of domain kinetics upon cyclic switching, are in good agreement with experimental data obtained for thin lead zirconate-titanate (PZT) thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Duiker, P. D. Beale, J. F. Scott, et al., J. Appl. Phys. 68, 5783 (1990).

    Article  ADS  Google Scholar 

  2. C. J. Brennan, Integr. Ferroelectr. 2, 73 (1992).

    Google Scholar 

  3. J. Lee, S. Esayan, A. Safari, and R. Ramesh, Appl. Phys. Lett. 65, 254 (1994).

    ADS  Google Scholar 

  4. G. Arlt and U. Robels, Integr. Ferroelectr. 3, 343 (1993).

    Google Scholar 

  5. E. Colla, D. Taylor, A. Tagantsev, and N. Setter, Appl. Phys. Lett. 72, 2478 (1998).

    ADS  Google Scholar 

  6. I. Stolichnov, A. Tagantsev, E. Colla, and N. Setter, Appl. Phys. Lett. 73, 1361 (1998).

    ADS  Google Scholar 

  7. V. Shur, S. Makarov, N. Ponomarev, et al., J. Korean Phys. Soc. 32, S1714 (1998).

    Google Scholar 

  8. E. Colla, S. Hong, D. Taylor, et al., Appl. Phys. Lett. 72, 2763 (1998).

    ADS  Google Scholar 

  9. W. Warren, D. Dimos, B. Tutler, et al., Appl. Phys. Lett. 65, 1018 (1994).

    Article  ADS  Google Scholar 

  10. V. V. Lemanov and V. K. Yarmarkin, Fiz. Tverd. Tela (St. Petersburg) 38, 2482 (1996) [Phys. Solid State 38, 1363 (1996)].

    Google Scholar 

  11. M. Grossmann, D. Boten, O. Lohse, et al., Appl. Phys. Lett. 77, 1894 (2000).

    Article  ADS  Google Scholar 

  12. A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. Lett. 84, 3177 (2000).

    Article  ADS  Google Scholar 

  13. A. Kholkin, E. Colla, A. Tagantsev, et al., Appl. Phys. Lett. 68, 2577 (1996).

    Article  ADS  Google Scholar 

  14. J. F. Scott and M. Dawber, Appl. Phys. Lett. 76, 3801 (2000).

    Article  ADS  Google Scholar 

  15. R. Ramesh, W. K. Chan, B. Wilkens, et al., Integr. Ferroelectr. 1, 1 (1992).

    Google Scholar 

  16. A. Yu. Kudzin, T. V. Panchenko, and S. P. Yudin, Fiz. Tverd. Tela (Leningrad) 16, 2437 (1974) [Sov. Phys. Solid State 16, 1589 (1974)].

    Google Scholar 

  17. A. Gruverman, O. Auciello, and H. Tokumoto, Appl. Phys. Lett. 69, 3191 (1996).

    Article  ADS  Google Scholar 

  18. V. M. Fridkin, Photoferroelectrics (Nauka, Moscow, 1976; Springer, Berlin, 1979).

    Google Scholar 

  19. V. Ya. Shur, Ferroelectric Thin Films: Synthesis and Basic Properties (Gordon and Breach, New York, 1996), Vol. 10, Chap. 6.

    Google Scholar 

  20. V. Ya. Shur, Yu. A. Popov, and N. V. Korovina, Fiz. Tverd. Tela (Leningrad) 26, 781 (1984) [Sov. Phys. Solid State 26, 471 (1984)].

    Google Scholar 

  21. V. Ya. Shur, Phase Transit. 65, 49 (1998).

    Google Scholar 

  22. V. Ya. Shur, Yu. A. Popov, and G. B. Soldatov, Fiz. Tverd. Tela (Leningrad) 25, 265 (1983) [Sov. Phys. Solid State 25, 148 (1983)].

    Google Scholar 

  23. V. Ya. Shur and E. L. Rumyantsev, Ferroelectrics 191, 319 (1997).

    Google Scholar 

  24. V. A. Yurin, Izv. Akad. Nauk SSSR, Ser. Fiz. 24, 1329 (1960).

    Google Scholar 

  25. U. Robels and G. Arlt, J. Appl. Phys. 73, 3454 (1993).

    Article  ADS  Google Scholar 

  26. P. Lambeck and G. Jonker, J. Phys. Chem. Solids 47, 453 (1986).

    Google Scholar 

  27. I. Stolichnov, A. Tagantsev, N. Setter, et al., Appl. Phys. Lett. 74, 3552 (1999).

    Article  ADS  Google Scholar 

  28. V. Ya. Shur, Author’s Abstract of Doctoral Dissertation (UPI, Sverdlovsk, 1990).

  29. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al., Integr. Ferroelectr. 33, 117 (2001).

    Google Scholar 

  30. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al., J. Appl. Phys. 90, 6312 (2001).

    Article  ADS  Google Scholar 

  31. R. C. Miller and G. Weinreich, Phys. Rev. 117, 1460 (1960).

    ADS  Google Scholar 

  32. M. Hayashi, J. Phys. Soc. Jpn. 33, 616 (1972).

    Google Scholar 

  33. G. Robert, D. Damjanovic, and N. Setter, Appl. Phys. Lett. 77, 4413 (2000).

    Article  ADS  Google Scholar 

  34. A. Bartic, D. Wouters, H. Maes, et al., J. Appl. Phys. 89, 3420 (2001).

    Article  ADS  Google Scholar 

  35. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al., J. Appl. Phys. (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 2049–2054.

Original Russian Text Copyright © 2002 by Shur, Rumyantsev, Nikolaeva, Shishkin, Baturin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V. et al. Kinetic approach for describing the fatigue effect in ferroelectrics. Phys. Solid State 44, 2145–2150 (2002). https://doi.org/10.1134/1.1521471

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1521471

Keywords

Navigation