Skip to main content
Log in

The forbidden gap and insulator-metal transition under pressure

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The behavior of the energy bands and the band gap width of a compressed insulator crystal is studied. The conduction band energy at the center of a face of the Brillouin zone first increases and then abruptly decreases upon an increase in compression, resulting in a collapse of the forbidden gap and in an insulator-metal (IM) transition. A model proposed for the mechanism of this transition interprets it to be a phase transition of order two and a half. The compression ratio and pressure at which an IM transition occurs in neon under pressure are predicted on the basis of nonempirical calculations of the valence and conduction bands. A simplified model suitable for calculating the metallization effect in more complex crystals is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Hemley and H. K. Mao, in Encyclopedia of Applied Physics (Wiley-VCH, Weinheim, 1997), Vol. 18, p. 555.

    Google Scholar 

  2. S. G. Louie and M. L. Cohen, Phys. Rev. B 10(8), 3237 (1974).

    Article  ADS  Google Scholar 

  3. D. A. Nelson and A. L. Ruoff, Phys. Rev. Lett. 42(6), 383 (1979).

    Article  ADS  Google Scholar 

  4. K. A. Goettel, J. H. Eggert, J. F. Silvera, and W. C. Moss, Phys. Rev. Lett. 62(6), 665 (1989).

    Article  ADS  Google Scholar 

  5. R. Reichlin, K. I. Brister, A. K. McMahan, et al., Phys. Rev. Lett. 62(6), 669 (1989).

    Article  ADS  Google Scholar 

  6. N. H. March, in Advances in High Pressure Research, Ed. by R. S. Bradley (Academic, New York, 1969), Vol. 3, p. 241.

    Google Scholar 

  7. J. Hama, Phys. Lett. A 105(6), 303 (1984).

    Article  ADS  Google Scholar 

  8. J. C. Boettger, Phys. Rev. B 33(8), 6788 (1986).

    ADS  Google Scholar 

  9. E. V. Zarochentsev and E. P. Troitskaya, Fiz. Tverd. Tela (St. Petersburg) 43(7), 1292 (2001) [Phys. Solid State 43, 1345 (2001)].

    Google Scholar 

  10. Yu. V. Eremeichenkova, E. V. Zarochentsev, and E. P. Troitskaya, Teor. Mat. Fiz. 106(3), 498 (1996).

    MathSciNet  Google Scholar 

  11. E. Troitskaya, Yu. Eremeichenkova, and E. Zarochentsev, Condens. Matter Phys. 8, 157 (1996).

    Google Scholar 

  12. V. G. Bar’yakhtar, E. V. Zarochentsev, E. P. Troitskaya, and Yu. V. Eremeichenkova, Fiz. Tverd. Tela (St. Petersburg) 40(8), 1464 (1998) [Phys. Solid State 40, 1330 (1998)].

    Google Scholar 

  13. E. V. Zarochentsev, E. P. Troitskaya, and Yu. V. Eremeichenkova, Metallofiz. Nove\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\)shie Tekhnol. 21(5), 3 (1999).

    Google Scholar 

  14. V. K. Sribnaya and K. B. Tolpygo, Fiz. Nizk. Temp. 6(3), 366 (1980) [Sov. J. Low Temp. Phys. 6, 175 (1980)].

    Google Scholar 

  15. E. V. Zarochentsev and E. P. Troitskaya, Fiz. Tverd. Tela (Leningrad) 30(8), 2367 (1988) [Sov. Phys. Solid State 30, 1365 (1988)].

    Google Scholar 

  16. I. V. Abarenkov and I. M. Antonova, Fiz. Tverd. Tela (Leningrad) 20(2), 565 (1978) [Sov. Phys. Solid State 20, 326 (1978)].

    Google Scholar 

  17. I. V. Abarenkov, I. M. Antonova, V. G. Bar’yakhtar, V. L. Bulatov, and E. V. Zarochentsev, Methods of Computational Physics in the Theory of Solid State: Electronic Structure of Perfect and Imperfect Crystals (Naukova Dumka, Kiev, 1991).

    Google Scholar 

  18. U. Rossler, in Rare Gas Solids, Ed. by M. L. Klein and J. Venables (Academic, New York, 1975).

    Google Scholar 

  19. E. V. Zarochentsev and E. P. Troitskaya, Fiz. Tverd. Tela (Leningrad) 27(11), 2474 (1985) [Sov. Phys. Solid State 27, 1480 (1985)].

    Google Scholar 

  20. V. G. Bar’akhtar, E. V. Zarochentsev, and E. P. Troitskaya, Theory of Adiabatic Potential and Atomic Properties of Simple Metals (Gordon & Breach, London, 1999).

    Google Scholar 

  21. Problems of Physical Kinetics and Physics of Solid State: Collection of Scientific Works, Ed. by A. G. Sitenko (Naukova Dumka, Kiev, 1990), p. 176.

    Google Scholar 

  22. V. K. Sribnaya, K. B. Tolpygo, and E. P. Troitskaya, Fiz. Tverd. Tela (Leningrad) 20(6), 1688 (1978) [Sov. Phys. Solid State 20, 977 (1978)].

    Google Scholar 

  23. V. V. Dyakin, B. I. Reser, and V. P. Shirokovskii, Phys. Status Solidi B 50, 459 (1972).

    Google Scholar 

  24. B. I. Reser and V. V. Dyakin, Phys. Status Solidi B 87, 41 (1978).

    Google Scholar 

  25. K. F. Herzfeld, Phys. Rev. 29, 701 (1927).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 7, 2002, pp. 1309–1317.

Original Russian Text Copyright © 2002 by Zarochentsev, Troitskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarochentsev, E.V., Troitskaya, E.P. The forbidden gap and insulator-metal transition under pressure. Phys. Solid State 44, 1370–1379 (2002). https://doi.org/10.1134/1.1494638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1494638

Keywords

Navigation