Skip to main content
Log in

Solar MHD turbulence in regions with various levels of flare activity

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The paper continues investigations of MHD turbulence in active solar regions. The statistical distributions of the increments (structure functions) of the turbulent field are studied analytically in the context of a refined Kolmogorov theory of turbulence. Since photospheric transport of the B z component of the magnetic field is quite similar to that of a scalar field in a turbulent flow, the theory of transport of a passive scalar can be applied. This approach enables us to show that the structure functions are determined by the competition between the dissipation of the magnetic and kinetic energies and to obtain a number of relations between the structure-function parameters and energy characteristics of the MHD turbulence. Taking into account general conclusions that can be drawn on the basis of the refined Kolmogorov turbulence theory, the structure functions of the B z field are calculated for eight active regions (from measurements of SOHO/MDI and the Huairou Solar Observing Station, China). These calculations show that the behavior of the structure functions is different for the B z field of each active region. The energy-dissipation index of the fluctuation spectrum (which is uniquely determined by the structure functions) is closely related to the level of flare activity: the more activity, the less steep the dissipation spectrum for a given active region. This provides a means to test and, consequently, forecast the flare activity of active regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Abramenko, V. B. Yurchishyn, H. Wang, and P. R. Goode, Astron. Zh. 78, 942 (2001) [Astron. Rep. 45, 824 (2001)].

    Google Scholar 

  2. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30(4), 299 (1941).

    Google Scholar 

  3. U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  4. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1995).

    Google Scholar 

  5. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (Nauka, Moscow, 1967; MIT Press, Cambridge, 1975), Chap. 2.

    Google Scholar 

  6. Ya. B. Zel’dovich, S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov, Usp. Fiz. Nauk 152(1), 3 (1987) [Sov. Phys. Usp. 30, 353 (1987)].

    MathSciNet  Google Scholar 

  7. A. N. Kolmogorov, La Mechanique de la turbulence (CNRS, Paris, 1962), p. 447.

    Google Scholar 

  8. A. N. Kolmogorov, J. Fluid Mech. 13(1), 82 (1962).

    ADS  MATH  MathSciNet  Google Scholar 

  9. C. J. Schrijver, C. Zwaan, A. C. Balke, et al., Astron. Astrophys. 253, L1 (1992).

    ADS  Google Scholar 

  10. J. K. Lawrence and C. J. Schrijver, Astrophys. J. 411, 402 (1993).

    Article  ADS  Google Scholar 

  11. J. K. Lawrence, A. A. Ruzmaikin, and A. C. Cadavid, Astrophys. J. 417, 805 (1993).

    Article  ADS  Google Scholar 

  12. E. Nesme-Ribes, N. Meunier, and B. Colin, Astron. Astrophys. 308, 213 (1994).

    ADS  Google Scholar 

  13. G. Consolini, V. Carbone, F. Berrilli, et al., Astron. Astrophys. 344, L33 (1999).

    ADS  Google Scholar 

  14. F. Lepreti, V. Carbone, G. Consolini, et al., in Mag-netic Fields and Solar Processes, ESA SP Ser. SP-448, 1, 327 (1999).

    ADS  Google Scholar 

  15. M. I. Rabinovich and M. M. Sushchik, Usp. Fiz. Nauk 160(1), 3 (1990) [Sov. Phys. Usp. 33, 1 (1990)].

    MathSciNet  Google Scholar 

  16. V. V. Zosimov and L. M. Lyamshev, Usp. Fiz. Nauk 165(4), 361 (1995) [Phys. Usp. 38, 347 (1995)].

    Google Scholar 

  17. V. S. Dotsenko, Usp. Fiz. Nauk 165(5), 481 (1995) [Phys. Usp. 38, 457 (1995)].

    Google Scholar 

  18. F. Schmitt, D. Schertzer, S. Lovejoy, and Y. Brunet, Nonlinear Process. Geophys. 1, 95 (1994).

    ADS  Google Scholar 

  19. A. M. Obukhov, J. Fluid Mech. 13(1), 77 (1962).

    ADS  MathSciNet  Google Scholar 

  20. A. S. Gurvich and S. L. Zubkovskii, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 2, 1856 (1963).

  21. F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, J. Fluid Mech. 140, 63 (1984).

    ADS  Google Scholar 

  22. A. V. Bitsadze, Foundations of the Theory of Analytic Functions of Complex Variables [in Russian] (Nauka, Moscow, 1984).

    Google Scholar 

  23. E. N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Clarendon Press, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

  24. J. Wang, Z. Shi, H. Wang, and Y. Lu, Astrophys. J. 456, 861 (1996).

    ADS  Google Scholar 

  25. V. I. Abramenko, T. J. Wang, and V. B. Yurchishin, Sol. Phys. 168, 75 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 79, No. 2, 2002, pp. 182–192.

Original Russian Text Copyright © 2002 by Abramenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramenko, V.I. Solar MHD turbulence in regions with various levels of flare activity. Astron. Rep. 46, 161–171 (2002). https://doi.org/10.1134/1.1451929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1451929

Keywords

Navigation