Skip to main content
Log in

A correlation between the distributions of pulsars and emission measures in the galaxy

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A correlation has been detected between the volume density of pulsars and the density of interstellar ionized gas on scales of more than 500 pc in Galactic longitude and 200 pc in Galactic latitude. On smaller scales, the correlation is present only for pulsars with ages less than 60000 years, which are located predominantly near supernova remnants and H II regions. This all indicates that pulsars are born in regions with high concentrations of interstellar gas. The minimum emission measures observed in the directions toward pulsars are inversely proportional to the pulsar ages. It is concluded that the ionized gas in the vicinities of a number of pulsars was formed during supernova explosions, and corresponds to Strömgren zones. The ionization of the gas in these zones requires a radiation energy on the order of 1050–1051 erg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Pynzar’, Astron. Zh. 70, 480 (1993) [Astron. Rep. 37, 245 (1993)].

    ADS  Google Scholar 

  2. A. V. Pynzar’ and V. I. Shishov, Astron. Zh. 76, 504 (1999) [Astron. Rep. 43, 436 (1999)].

    Google Scholar 

  3. J. H. Taylor, R. N. Manchester, and A. G. Lyne, Astrophys. J., Suppl. Ser. 88, 529 (1993).

    Article  ADS  Google Scholar 

  4. J. H. Taylor, R. N. Manchester, A. G. Lyne, and F. Camilo, unpublished work (1995).

  5. W. J. Altenhoff, D. Downes, T. Pauls, and J. Shraml, Astron. Astrophys., Suppl. Ser. 35, 23 (1979).

    ADS  Google Scholar 

  6. R. F. Haynes, J. L. Caswell, and L. W. J. Simons, Aust. J. Phys. Astrophys. Suppl. 45, 1 (1978).

    ADS  Google Scholar 

  7. T. Handa, Y. Sofue, N. Nakai, et al., Publ. Astron. Soc. Jpn. 39, 709 (1987).

    ADS  Google Scholar 

  8. W. J. Altenhoff, D. Downes, L. Goad, et al., Astron. Astrophys., Suppl. Ser. 1, 319 (1970).

    ADS  Google Scholar 

  9. R. J. Reynolds, F. L. Roesler, and F. Sherb, Astrophys. J. Lett. 192, L53 (1974).

    Article  ADS  Google Scholar 

  10. R. J. Reynolds, Astrophys. J. 282, 191 (1984).

    Article  ADS  Google Scholar 

  11. R. J. Reynolds and P. M. Ogden, Astron. J. 87, 306 (1982).

    Article  ADS  Google Scholar 

  12. R. J. Reynolds, Astrophys. J. 216, 433 (1977).

    Article  ADS  Google Scholar 

  13. A. Broadbent, C. G. T. Haslam, and J. L. Osborne, Mon. Not. R. Astron. Soc. 237, 381 (1989).

    ADS  Google Scholar 

  14. L. Hart and A. Pedlar, Mon. Not. R. Astron. Soc. 176, 547 (1976).

    ADS  Google Scholar 

  15. F. J. Lockman, Astrophys. J. 209, 429 (1976).

    Article  ADS  Google Scholar 

  16. J. C. Cersosimo, I. N. Azcarate, L. Hart, and F. R. Colomb, Astron. Astrophys. 208, 239 (1989).

    ADS  Google Scholar 

  17. A. V. Pynzar’, Pis’ma Astron. Zh. 17, 249 (1991) [Sov. Astron. Lett. 17, 105 (1991)].

    ADS  Google Scholar 

  18. N. G. Bochkarev, in Space Physics. Small Encyclopedia [in Russian] (Sovetskaya Entsiklopediya, Moscow, 1986), p. 270.

    Google Scholar 

  19. D. A. Green, Mon. Not. R. Astron. Soc. 209, 449 (1984).

    ADS  Google Scholar 

  20. A. V. Kovalenko, A. V. Pynzar’, and V. A. Udal’tsov, Astron. Zh. 71, 110 (1994) [Astron. Rep. 38, 95 (1994)].

    ADS  Google Scholar 

  21. V. S. Avedisova and G. I. Kondratenko, Nauchn. Inf. Astron. Sov. Akad. Nauk SSSR 56, 59 (1984).

    ADS  Google Scholar 

  22. E. C. Reinfenstein, T. L. Wilson, B. F. Burke, et al., Astron. Astrophys. 4, 357 (1970).

    ADS  Google Scholar 

  23. T. L. Wilson, P. G. Mezger, F. F. Gardner, and D. K. Milne, Astron. Astrophys. 6, 364 (1970).

    ADS  Google Scholar 

  24. D. Downes, T. L. Wilson, J. Bieging, and J. Wink, Astron. Astrophys., Suppl. Ser. 40, 379 (1980).

    ADS  Google Scholar 

  25. B. T. Lynds, Astrophys. J., Suppl. Ser. 12, 163 (1965).

    Article  ADS  Google Scholar 

  26. T. A. Lozinskaya, Supernovae and Stellar Winds. Interaction with Galactic Gas [in Russian] (Nauka, Moscow, 1986).

    Google Scholar 

  27. L. Spitzer, Jr., Physical Processes in the Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  28. A. M. Cherepashchuk, Astrophys. Space Sci. 221, 227 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 78, No. 7, 2001, pp. 585–593.

Original Russian Text Copyright © 2001 by Pynzar’, Shishov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pynzar’, A.V., Shishov, V.I. A correlation between the distributions of pulsars and emission measures in the galaxy. Astron. Rep. 45, 502–509 (2001). https://doi.org/10.1134/1.1383809

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1383809

Keywords

Navigation