Skip to main content
Log in

Local-field effects in reflectance anisotropy spectra of the (001) surface of gallium arsenide

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Characteristic reflectance anisotropy spectra of the naturally oxidized (001) surfaces of GaAs undoped crystals and Ga0.7Al0.3As epitaxial films are measured in the energy range 1.5–5.7 eV. The spectra are interpreted in the framework of the microscopic model proposed for a GaAs(001)/oxide interface and the reflectance anisotropy (difference) theory developed for a multilayer medium with a monolayer of atomic dipoles located near one of the interfaces. The anisotropy of dipole polarizability and the anisotropy of the plane lattice formed by dipoles are taken into account within the unified Green function approach of classical electrodynamics. A good agreement between the measured and calculated reflectance anisotropy spectra of the oxidized GaAs(001) surfaces shows that the local field effects at the semiconductor-oxide interface make the main contribution to these spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Chiaradia and G. Charotti, in Photonic Probes of Surfaces: Electromagnetic Waves-Recent Developments in Research, Ed. by P. Halevi (Elsevier, Amsterdam, 1995), Vol. 2, Chap. 3, p. 99.

    Google Scholar 

  2. V. L. Berkovits, P. Chiaradia, D. Paget, et al., Surf. Sci. 441, 26 (1999); A. I. Shkrebtii, N. Esser, W. Richter, et al., Phys. Rev. Lett. 81 (3), 721 (1998).

    Article  Google Scholar 

  3. V. L. Berkovits and D. Paget, Thin Solid Films 233, 9 (1993).

    Article  Google Scholar 

  4. S. E. Acosta-Ortiz and A. Lastras-Martínez, Solid State Commun. 64(5), 809 (1987).

    Article  Google Scholar 

  5. D. E. Aspnes, J. Vac. Sci. Technol. B 3(5), 1498 (1985).

    Article  Google Scholar 

  6. D. I. Westwood, Z. Sobiesierski, C. C. Matthai, et al., J. Vac. Sci. Technol. B 16(4), 2358 (1998).

    Article  Google Scholar 

  7. V. L. Berkovits, V. N. Bessolov, T. V. L’vova, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 25(7), 1406 (1991) [Sov. Phys. Semicond. 25, 847 (1991)].

    Google Scholar 

  8. T. Nakayama, Phys. Status Solidi B 202(2), 741 (1997); M. Murayama, K. Shiraishi, and T. Nakayama, Jpn. J. Appl. Phys. 37 (7), 4109 (1998).

    ADS  Google Scholar 

  9. S. E. Acosta-Ortiz, J. Appl. Phys. 70(6), 3239 (1991).

    Article  ADS  Google Scholar 

  10. V. L. Berkovits, A. B. Gordeeva, V. M. Lantratov, and T. V. L’vova, Fiz. Tverd. Tela (St. Petersburg) 42(5), 950 (2000) [Phys. Solid State 42, 981 (2000)].

    Google Scholar 

  11. N. Kar and A. Bagchi, Solid State Commun. 33(6), 645 (1980); A. Bagchi, R. G. Barrera, and B. B. Dasgupta, Phys. Rev. Lett. 44 (22), 1475 (1980).

    Article  Google Scholar 

  12. A. Bagchi, R. G. Barrera, and R. Fuchs, Phys. Rev. B 25(12), 7086 (1982).

    Article  ADS  Google Scholar 

  13. W. L. Mochan and R. G. Barrera, Phys. Rev. Lett. 56(20), 2221 (1986).

    ADS  Google Scholar 

  14. P. Ye and Y. R. Shen, Phys. Rev. B 28(8), 4288 (1983).

    Article  ADS  Google Scholar 

  15. W. L. Mochan and R. G. Barrera, Phys. Rev. Lett. 55(11), 1192 (1985).

    ADS  Google Scholar 

  16. I. Gerard, C. Debiemme-Chouvy, J. Vigneron, et al., Surf. Sci. 433–435, 131 (1999).

    Google Scholar 

  17. W. Chen, M. Dumas, D. Mao, and A. Kahn, J. Vac. Sci. Technol. B 10(4), 1886 (1992).

    Article  Google Scholar 

  18. B. M. E. van der Hoff and G. C. Benson, Can. J. Phys. 31, 1087 (1953); B. R. A. Nijboer and F. D. de Wette, Physica (Amsterdam) 23, 309 (1957); 24, 422 (1958); G. D. Mahan and A. A. Lucas, J. Chem. Phys. 68, 1344 (1978).

    Google Scholar 

  19. V. A. Kosobukin, Fiz. Tverd. Tela (St. Petersburg) 36(10), 3015 (1994) [Phys. Solid State 36, 1605 (1994)].

    Google Scholar 

  20. V. A. Kosobukin, Preprint No. 1724, FTI (Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg, 1999).

  21. M. Sauvage-Simkin, R. Pinchaux, J. Massies, et al., Phys. Rev. Lett. 62(5), 563 (1989).

    Article  ADS  Google Scholar 

  22. I. Vasiliev, S. Ogut, and J. R. Chelikowsky, Phys. Rev. Lett. 78(25), 4805 (1997).

    Article  ADS  Google Scholar 

  23. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27(2), 985 (1983).

    Article  ADS  Google Scholar 

  24. D. E. Aspnes, G. P. Schwarts, G. J. Gualtieri, et al., J. Electrochem. Soc. 128(3), 591 (1981).

    Google Scholar 

  25. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1958), Vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 43, No. 6, 2001, pp. 985–991.

Original Russian Text Copyright © 2001 by Berkovits, Gordeeva, Kosobukin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkovits, V.L., Gordeeva, A.B. & Kosobukin, V.A. Local-field effects in reflectance anisotropy spectra of the (001) surface of gallium arsenide. Phys. Solid State 43, 1018–1024 (2001). https://doi.org/10.1134/1.1378138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1378138

Keywords

Navigation