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Supplementary Material 

Theoretical Foundation for Data Processing 

Methods to quantify changes in concentrations of oxygenated hemoglobin (Δ[HbO]), 

deoxygenated hemoglobin (Δ[HHb]), and redox-state cytochrome c oxidase (Δ[CCO]) have been  

developed and reported [1, 2]. A brief review is provided below for general readers who wish to 

understand the theoretical foundation and processing methods in depth.  

A broadband near-infrared spectroscopy (bbNIRS) system provides measurements of optical 

spectra at different times (t), as expressed I(t, ). A relative optical density spectrum, OD(t, ), 

can be defined and calculated at each wavelength  as: 

                                                  𝛥𝑂𝐷(𝑡, 𝜆) = 𝑙𝑜𝑔10[
𝐼0(𝑡=0,𝜆)

𝐼(𝑡,𝜆)
],     (1) 

where I0(t=0, λ) can be the baseline spectrum at time t=0 or an average of several initial baseline 

spectral readings (i.e., the first two spectra collected in each experiment), and I(t, λ) represent time-

varying spectra  acquired at each time point throughout the entire experiment. The estimations of 

Δ[HbO] and Δ[CCO] from raw spectral data taken with bbNIRS throughout the experiment were 

based on modified Beer-Lambert’s law [3], which offers a quantitative relationship of ΔOD() on 

Δ[HbO], Δ[HHb], and Δ[CCO] at each wavelength, , at each time point, with a wavelength-

dependent path-length factor, L(). Based on optical diffusion theory [4], ΔOD()/L() can be 

expressed as a sum of optical absorbance contributed by Δ[HbO], Δ[HHb], and Δ[CCO] 

components, as given below: 
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where [HbO], [HHb] and [CCO] are relative concentration changes of HbO, HHb and CCO 

respectively; εHbO(λ), εHHb(λ) and εCCO(λ) represent the extinction coefficients at each wavelength 

of HbO, HHb and CCO, which can be found in ref. [1]; L(λ) is a wavelength dependent factor that 

denotes the effective pathlength of the detected photons through tissues at each wavelength. 

Furthermore, according to the Modified Beer-Lambert Law [3, 5], L(λ) can be expressed as: 
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where r is a constant that denotes the source-detector distance. In this study, we used source 

detector separation of 3 cm, so r=3. The wavelength dependence of L(λ) is caused by a wavelength-

dependent differential pathlength factor, DPF(λ). By substituting Eq. (3) into Eq. (2) for multiple 

wavelengths, the estimation of [HbO], [HHb] and [CCO] can be expressed as follows: 
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In order to accurately solve [HbO], [HHb] and [CCO] using Eq. (4), we would need to 

know DPF(λ) in the wavelength range of our measurements. It is known that appropriate or 

accurate selection/estimation of wavelength-dependent DPF is crucial for accurate estimation of 

chromophore concentrations [6]. In this study, DPF(λ) values were assumed to be time-invariant 

because of given stable brain optical properties. Based on diffusion theory with the semi-infinite 

boundary geometry [7], DPF() can be determined by 
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    (5) 

where µa(λ) and µs'(λ) are the estimated absorption and reduced scattering coefficients across the 

wavelength range of interest.  

Values of µa(λ) and µs'(λ) were measured using a tissue oximeter (OxiplexTS, ISS) that 

operates in the frequency-domain. This device provides readings of µa and µs' values at 750 nm 

and 830 nm, as well as absolute concentrations of [HbO] and [HHb]. However, to obtain µs'(λ) 

values across the entire range of wavelengths from 780-900 nm, we used Mie theory to interpolate 

and extrapolate the two measured µs' values at 750 nm and 830 nm. Mie theory is typically 

represented by k-b, where k and b were determined by fitting this equation to both µs' values at 

750 nm and 830 nm. In addition, absorption coefficients in the same wavelength range (780-900 

nm) were estimated based on [HbO] and [HHb] measured by the same tissue oximeter [4]. 

After combining the measured ΔOD() values across the measurement period and empirical 

µa(λ) and µs'(λ) values of the human forehead [2], we were able to solve eq. (4) at each 

measurement time point using MATLAB, achieving temporal series of [HbO], [HHb] and 

[CCO] under respective experimental conditions, as shown in Fig. 4(b) in the main paper. 

Specifically, our calculations covered the spectral range of 780-900 nm with a total of 121 

wavelengths. Figure S1 below illustrates the processing steps described above. 
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Fig. S1 A data processing flow chart used to quantify [HbO] and [HHb] from raw bbNIRS data.   

Step 4: Quantification of [HbO] and [CCO] by solving the following matrix at each time 

point after performing the pseudo-inversion of the n3  matrix. Then, a time-dependent series 

of [HbO] (and [CCO]) can be formed, as demonstrated below on the right panel. 

Step 1: bbNIRS data acquisition 

to form time-dependent optical 

spectra in the NIR range of 750-

900 nm. 

Step 2: Calculation of OD 

spectra at each time point. t. 

Δ𝑂𝐷(𝑡,𝜆) = 𝑙𝑜𝑔10[
𝐼0(𝑡 = 0, 𝜆)

𝐼(𝑡, 𝜆)
] 

Step 3: Modified Beer-Lambert’s law that associates measured OD values over 

n wavelengths with changes of concentrations in [HbO], [HHb] and [CCO]. 

•

• 
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