We have developed high-current density field emission sources using arrays of multiwalled carbon nanotube bundles. The field emission behavior of a variety of lithographically patterned array geometries was investigated and the arrays of 1-μm and 2-μm-diameter nanotube bundles spaced 5μm apart (edge-to-edge spacing) were identified as the most optimum combination, routinely producing 1.51.8Acm2 at low electric fields of approximately 4Vμm, rising to >6Acm2 at 20Vμm over a 100-μm-diameter area. We have found that the field emission performance depends strongly on the bundle diameter and interbundle spacing and such arrays perform significantly better in field emission than ordered arrays of isolated nanotubes or dense, continuous mats of nanotubes previously reported in literature.

1.
A. A.
Talin
,
K. A.
Dean
, and
J. E.
Jaskie
,
Solid-State Electron.
45
,
963
(
2001
).
2.
J. M.
Bonard
,
H.
Kind
,
T.
Stöckli
, and
L.
Nilsson
,
Solid-State Electron.
45
,
893
(
2001
).
3.
H.
Murakami
,
M.
Hirakawa
,
C.
Tanaka
, and
H.
Yamakawa
,
Appl. Phys. Lett.
76
,
1776
(
2000
).
4.
W.
Zhu
,
C.
Bower
,
G. P.
Kochankski
, and
S.
Jin
,
Solid-State Electron.
45
,
921
(
2001
).
5.
P. H.
Siegel
,
T. H.
Lee
, and
J.
Xu
, JPL New Technology Report, NPO 21014, March 21,
2000
.
6.
P. H.
Siegel
,
A.
Fung
,
H. M.
Manohara
,
J.
Xu
, and
B.
Chang
, in
Proceedings of the 12th International Symposium on Space Terahertz Technology
2001
,
Jet Propulsion Laboratory
,
San Diego
, CA, pp.
94
103
.
7.
J. T. L.
Thong
,
C. H.
Oon
,
W. K.
Eng
,
W. D.
Zhang
, and
L. M.
Gan
,
Appl. Phys. Lett.
79
,
2811
(
2001
).
8.
J. I.
Sohn
,
S.
Lee
,
Y. H.
Song
,
S. Y.
Choi
,
K. I.
Cho
, and
K. S.
Nam
,
Appl. Phys. Lett.
78
,
901
(
2001
).
9.
A. M.
Rao
,
D.
Jacques
,
R. C.
Haddon
,
W.
Zhu
,
C.
Bower
, and
S.
Jin
,
Appl. Phys. Lett.
76
,
3813
(
2000
).
10.
S.
Fan
,
M. G.
Chapline
,
N. R.
Franklin
,
T. W.
Tombler
,
A. M.
Cassell
, and
H.
Dai
,
Science
283
,
512
(
1999
).
11.
L.
Nilsson
,
O.
Groening
,
C.
Emmenegger
,
O.
Kuettel
,
E.
Schaller
,
L.
Schlapbach
,
H.
Kind
,
J.-M.
Bonard
, and
K.
Kern
,
Appl. Phys. Lett.
76
,
2071
(
2000
).
12.
J. S.
Suh
,
K. S.
Jeong
,
J. S.
Lee
, and
I.
Han
,
Appl. Phys. Lett.
80
,
2392
(
2002
).
13.
V. I.
Merkulov
,
D. H.
Lowndes
, and
L. R.
Baylor
,
Appl. Phys. Lett.
89
,
1933
(
2001
).
14.
M.
Chhowalla
,
C.
Ducati
,
N. L.
Rupesinghe
,
K. B. K.
Teo
, and
G. A. J.
Amaratunga
,
Appl. Phys. Lett.
79
,
2079
(
2001
).
15.
V.
Semet
,
V. T.
Binh
,
P.
Vincent
,
D.
Guillot
,
K. B. K.
Teo
,
M.
Chhowalla
,
G. A. J.
Amaratunga
,
W. I.
Milne
,
P.
Legagneux
, and
D.
Pribat
,
Appl. Phys. Lett.
81
,
343
(
2002
).
16.
S. H.
Jo
,
Y.
Tu
,
Z. P.
Huang
,
D. L.
Carnahan
,
D. Z.
Wang
, and
Z. F.
Ren
,
Appl. Phys. Lett.
82
,
3520
(
2003
).
17.
K. B. K.
Teo
,
M.
Chhowalla
,
G. A. J.
Amaratunga
,
W. I.
Milne
,
G.
Pirio
,
P.
Legagneux
,
F.
Wyczisk
,
D.
Pribat
, and
D. G.
Hasko
,
Appl. Phys. Lett.
80
,
2011
(
2002
).
18.
H. M.
Manohara
,
W.
Dang
,
M.
Hoenk
,
A.
Husain
,
P. H.
Siegel
, and
A.
Scherer
,
Proc. SPIE
5343
,
227
(
2004
).
19.
W.
Zhu
,
C.
Bower
,
O.
Zhou
,
G.
Kochanski
, and
S.
Jin
,
Appl. Phys. Lett.
75
,
873
(
1999
).
20.
R. H.
Fowler
and
L. W.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
You do not currently have access to this content.