Focused electron beam induced processing (FEBIP) of volatile organometallic precursors has become an effective and versatile method of fabricating metal-containing nanostructures. However, the electron stimulated decomposition process responsible for the growth of these nanostructures traps much of the organic content from the precursor’s ligand architecture, resulting in deposits composed of metal atoms embedded in an organic matrix. To improve the metallic properties of FEBIP structures, the metal content must be improved. Toward this goal, the authors have studied the effect of atomic hydrogen (AH) and atomic oxygen (AO) on gold-containing deposits formed from the electron stimulated decomposition of the FEBIP precursor, dimethyl-(acetylacetonate) gold(III), AuIII(acac)Me2. The effect of AH and AO on nanometer thick gold-containing deposits was probed at room temperature using a combination of x-ray photoelectron spectroscopy (XPS), scanning Auger electron spectroscopy, and atomic force microscopy (AFM). XPS revealed that deposits formed by electron irradiation of AuIII(acac)Me2 are only ≈10% gold, with ≈80% carbon and ≈10% oxygen. By exposing deposits to AH, all of the oxygen atoms and the majority of the carbon atoms were removed, ultimately producing a deposit composed of ≈75% gold and ≈25% carbon. In contrast, all of the carbon could be etched by exposing deposits to AO, although some gold atoms were also oxidized. However, oxygen was rapidly removed from these gold oxide species by subsequent exposure to AH, leaving behind purely metallic gold. AFM analysis revealed that during purification, removal of the organic contaminants was accompanied by a decrease in particle size, consistent with the idea that the radical treatment of the electron beam deposits produced close packed, gold particles. The results suggest that pure metallic structures can be formed by exposing metal-containing FEBIP deposits to a sequence of AO followed by AH.

1.
I.
Utke
,
P.
Hoffman
, and
J.
Melngailis
,
J. Vac. Sci. Technol. B
26
,
1197
(
2008
).
2.
W. F.
van Dorp
and
C. W.
Hagen
,
J. Appl. Phys.
104
,
081301
(
2008
).
3.
S. J.
Randolph
,
J. D.
Fowlkes
, and
P. D.
Rack
,
Crit. Rev. Solid State Mater. Sci.
31
,
55
(
2006
).
4.
M.
Tanaka
,
M.
Shimojo
,
M.
Han
,
K.
Mitsuishi
, and
K.
Furuya
,
Surf. Interface Anal.
37
,
261
(
2005
).
5.
W. F.
van Dorp
,
C. W.
Hagen
,
P. A.
Crozier
, and
P.
Kruit
,
Nanotechnology
19
,
225305
(
2008
).
6.
K.
Edinger
 et al,
J. Vac. Sci. Technol. B
22
,
2902
(
2004
).
7.
T.
Liang
,
E.
Frendberg
,
B.
Lieberman
, and
A.
Stivers
,
J. Vac. Sci. Technol. B
23
,
3101
(
2005
).
8.
K. L.
Lee
,
D. W.
Abraham
,
F.
Secord
, and
L.
Landstein
,
J. Vac. Sci. Technol. B
9
,
3562
(
1991
).
9.
D. J.
Keller
and
C.
Chih-Chung
,
Surf. Sci.
268
,
333
(
1992
).
10.
I.
Utke
,
T.
Bret
,
D.
Laub
,
P. A.
Buffat
,
L.
Scandella
, and
P.
Hoffman
,
Microelectron. Eng.
73–74
,
553
(
2004
).
11.
I. -C.
Chen
,
L. -H.
Chen
,
C.
Orme
,
A.
Quist
,
R.
Lal
, and
S.
Jin
,
Nanotechnology
17
,
4322
(
2006
).
12.
I.
Utke
,
B.
Dwir
,
K.
Leifer
,
F.
Cicoira
,
P.
Doppelt
,
P.
Hoffman
, and
E.
Kapon
,
Microelectron. Eng.
53
,
261
(
2000
).
13.
C. T. H.
Heerkens
,
M. J.
Kamerbeek
,
W. F.
van Dorp
,
C. W.
Hagen
, and
J.
Hoekstra
,
Microelectron. Eng.
86
,
961
(
2009
).
14.
K. I.
Schiffmann
,
Nanotechnology
4
,
163
(
1993
).
15.
H. W. P.
Koops
,
J.
Kretz
,
M.
Rudolph
, and
M.
Weber
,
J. Vac. Sci. Technol. B
11
,
2386
(
1993
).
16.
M.
Weber
,
M.
Rudolph
,
J.
Kretz
, and
H. W. P.
Koops
,
J. Vac. Sci. Technol. B
13
,
461
(
1995
).
17.
C.
Schoessler
and
H. W. P.
Koops
,
J. Vac. Sci. Technol. B
16
,
862
(
1998
).
18.
N.
Silvis-Cividjian
,
C. W.
Hagen
,
P.
Kruit
,
M. A. d.
Stam
, and
H. B.
Groen
,
Appl. Phys. Lett.
82
,
3514
(
2003
).
19.
T.
Brintlinger
 et al,
J. Vac. Sci. Technol. B
23
,
3174
(
2005
).
20.
G. C.
Gazzadi
and
S.
Frabboni
,
J. Vac. Sci. Technol. B
23
,
L1
(
2005
).
21.
S.
Frabboni
,
G. C.
Gazzadi
,
L.
Felisari
, and
A.
Spessot
,
Appl. Phys. Lett.
88
,
213116
(
2006
).
22.
H. W. P.
Koops
,
A.
Kaya
, and
M.
Weber
,
J. Vac. Sci. Technol. B
13
,
2400
(
1995
).
23.
P. D.
Rack
,
J. D.
Fowlkes
, and
S. J.
Randolph
,
Nanotechnology
18
,
465602
(
2007
).
24.
T.
Lukasczyk
,
M.
Schirmer
,
H. -P.
Steinruck
, and
H.
Marbach
,
Langmuir
25
,
11930
(
2009
).
25.
I.
Utke
,
A.
Luisier
,
P.
Hoffman
,
D.
Laub
, and
P. A.
Buffat
,
Appl. Phys. Lett.
81
,
3245
(
2002
).
26.
A.
Perentes
,
G.
Sinicco
,
G.
Boero
,
B.
Dwir
, and
P.
Hoffman
,
J. Vac. Sci. Technol. B
25
,
2228
(
2007
).
27.
K. L.
Lee
and
M.
Hatzakis
,
J. Vac. Sci. Technol. B
7
,
1941
(
1989
).
28.
J.
Kretz
,
M.
Rudolph
,
M.
Weber
, and
H. W. P.
Koops
,
Microelectron. Eng.
23
,
477
(
1994
).
29.
I.
Utke
,
P.
Hoffman
,
B.
Dwir
,
K.
Leifer
,
E.
Kapon
, and
P.
Doppelt
,
J. Vac. Sci. Technol. B
18
,
3168
(
2000
).
30.
S.
Graells
,
R.
Alcubilla
,
G.
Badenes
, and
R.
Quidant
,
Appl. Phys. Lett.
91
,
121112
(
2007
).
31.
R. M.
Langford
,
T. -X.
Wang
, and
D.
Ozkaya
,
Microelectron. Eng.
84
,
784
(
2007
).
32.
A.
Botman
,
J. J. L.
Mulders
, and
C. W.
Hagen
,
Nanotechnology
20
,
372001
(
2009
).
33.
Y. M.
Lau
,
P. C.
Chee
,
J. T. L.
Thong
, and
V.
Ng
,
J. Vac. Sci. Technol. A
20
,
1295
(
2002
).
34.
I.
Utke
,
V.
Friedli
,
J.
Michler
,
T.
Bret
,
X.
Multone
, and
P.
Hoffman
,
Appl. Phys. Lett.
88
,
031906
(
2006
).
35.
K. L.
Klein
,
S. J.
Randolph
,
J. D.
Fowlkes
,
L. F.
Allard
,
H. M.
Meyer
 III
,
M. L.
Simpson
, and
P. D.
Rack
,
Nanotechnology
19
,
345705
(
2008
).
36.
H.
Plank
,
C.
Gspan
,
M.
Dienstleder
,
G.
Kothleitner
, and
F.
Hofer
,
Nanotechnology
19
,
485302
(
2008
).
37.
J.
Li
,
M.
Toth
,
V.
Tileli
,
K. A.
Dunn
,
C. J.
Lobo
, and
B. L.
Thiel
,
Appl. Phys. Lett.
93
,
023130
(
2008
).
38.
A.
Fernández-Pacheco
,
J. M.
De Teresa
,
R.
Cordoba
, and
M. R.
Ibarra
,
J. Phys. D: Appl. Phys.
42
,
055005
(
2009
).
39.
H. W. P.
Koops
,
C.
Schoessler
,
A.
Kaya
, and
M.
Weber
,
J. Vac. Sci. Technol. B
14
,
4105
(
1996
).
40.
S.
Wang
,
Y. -M.
Sun
,
Q.
Wang
, and
J. M.
White
,
J. Vac. Sci. Technol. B
22
,
1803
(
2004
).
41.
S. J.
Randolph
,
J. D.
Fowlkes
, and
P. D.
Rack
,
J. Appl. Phys.
97
,
124312
(
2005
).
42.
A.
Botman
,
J. J. L.
Mulders
,
R.
Weemaes
, and
S.
Mentink
,
Nanotechnology
17
,
3779
(
2006
).
43.
M. H.
Ervin
,
D.
Chang
,
B.
Nichols
,
A.
Wickenden
,
J.
Barry
, and
J.
Melngailis
,
J. Vac. Sci. Technol. B
25
,
2250
(
2007
).
44.
S.
Frabboni
,
G. C.
Gazzadi
, and
A.
Spessot
,
Physica E (Amsterdam)
37
,
265
(
2007
).
45.
K.
Murakami
 et al,
Jpn. J. Appl. Phys.
48
,
06FF12
(
2009
).
46.
H.
Hiroshima
,
N.
Suzuki
,
N.
Ogawa
, and
M.
Komuro
,
Jpn. J. Appl. Phys., Part 1
38
,
7135
(
1999
).
47.
R. M.
Langford
,
D.
Ozkaya
,
J.
Sheridan
, and
R.
Chater
,
Microsc. Microanal.
10
,
1122
(
2004
).
48.
K.
Mølhave
,
D. N.
Madsen
,
A. M.
Rasmussen
,
A.
Carlsson
,
C. C.
Appel
,
M.
Brorson
,
C. J. H.
Jacobsen
, and
P.
Boggild
,
Nano Lett.
3
,
1499
(
2003
).
49.
A.
Folch
,
J.
Tejada
,
C. H.
Peters
, and
M. S.
Wrighton
,
Appl. Phys. Lett.
66
,
2080
(
1995
).
50.
M.
Shimojo
,
M.
Takeguchi
, and
K.
Furuya
,
Nanotechnology
17
,
3637
(
2006
).
51.
M.
Shimojo
,
M.
Takeguchi
,
K.
Mitsuishi
,
M.
Tanaka
, and
K.
Furuya
,
Jpn. J. Appl. Phys., Part 1
46
,
6247
(
2007
).
52.
M.
Takeguchi
,
M.
Shimojo
, and
K.
Furuya
,
Jpn. J. Appl. Phys., Part 1
46
,
6183
(
2007
).
53.
J.
Barry
,
M. H.
Ervin
,
J.
Molstad
,
A.
Wickenden
,
T.
Brintlinger
,
P.
Hoffman
, and
J.
Meingailis
,
J. Vac. Sci. Technol. B
24
,
3165
(
2006
).
54.
A.
Botman
,
M.
Hesselberth
, and
J. J. L.
Mulders
,
Microelectron. Eng.
85
,
1139
(
2008
).
55.
K.
Murakami
,
S.
Nishihara
,
N.
Matsubara
,
S.
Ichikawa
,
F.
Wakaya
, and
M.
Takai
,
J. Vac. Sci. Technol. B
27
,
721
(
2009
).
56.
J. D.
Blackwood
and
F. K.
McTaggart
,
Aust. J. Chem.
12
,
114
(
1959
).
57.
P.
Tomkiewicz
,
A.
Winkler
,
M.
Krzywiecki
,
T.
Chasse
, and
J.
Szuber
,
Appl. Surf. Sci.
254
,
8035
(
2008
).
58.
U.
Bischler
and
E.
Bertel
,
J. Vac. Sci. Technol. A
11
,
458
(
1993
).
59.
J. D.
Wnuk
,
J. M.
Gorham
,
S. G.
Rosenberg
,
W. F.
van Dorp
,
T. E.
Madey
,
C. W.
Hagen
, and
D. H.
Fairbrother
,
J. Phys. Chem. C
113
,
2487
(
2009
).
60.
W. F.
van Dorp
,
J. D.
Wnuk
,
J. M.
Gorham
,
D. H.
Fairbrother
,
T. E.
Madey
, and
C. W.
Hagen
,
J. Appl. Phys.
106
,
074903
(
2009
).
61.
J. D.
Wnuk
,
J. M.
Gorham
,
B. A.
Smith
,
M.
Shin
, and
D. H.
Fairbrother
,
J. Vac. Sci. Technol. A
25
,
621
(
2007
).
62.
J. D.
Wnuk
,
J. M.
Gorham
,
S. G.
Rosenberg
,
W. F.
van Dorp
,
T. E.
Madey
,
C. W.
Hagen
, and
D. H.
Fairbrother
,
J. Appl. Phys.
107
,
054301
(
2010
).
63.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-Ray Photoelectron Spectroscopy
(
Physical Electronics USA, Inc.
,
Chanhassen
,
1995
).
64.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
17
,
911
(
1991
).
65.
J. M.
Gorham
,
J. D.
Wnuk
,
M.
Shin
, and
D. H.
Fairbrother
,
Environ. Sci. Technol.
41
,
1238
(
2007
).
66.
S. K.
Bhargava
,
F.
Mohr
, and
J. D.
Gorman
,
J. Organomet. Chem.
607
,
93
(
2000
).
67.
J.
Torres
,
C. C.
Perry
,
S. J.
Bransfield
, and
D. H.
Fairbrother
,
J. Phys. Chem. B
106
,
6265
(
2002
).
68.
A.
Jelea
,
F.
Marinelli
,
Y.
Ferro
,
A.
Allouche
, and
C.
Brosset
,
Carbon
42
,
3189
(
2004
).
69.
M.
Xi
and
B. E.
Bent
,
J. Phys. Chem.
97
,
4167
(
1993
).
70.
T.
Zecho
,
A.
Horn
,
J.
Biener
, and
J.
Kuppers
,
Surf. Sci.
397
,
108
(
1998
).
71.
D.
Kolovos-Vellianitis
and
J.
Kuppers
,
J. Phys. Chem. B
107
,
2559
(
2003
).
72.
A.
Dinger
,
C.
Lutterloh
,
J.
Biener
, and
J.
Kuppers
,
Surf. Sci.
421
,
17
(
1999
).
73.
T.
Zecho
,
B. D.
Brandner
,
J.
Biener
, and
J.
Kuppers
,
J. Phys. Chem. B
105
,
6194
(
2001
).
74.
J. M.
Gorham
,
B. A.
Smith
, and
D. H.
Fairbrother
,
J. Phys. Chem. C
111
,
374
(
2007
).
75.
E.
Vietzke
,
V.
Philipps
,
K.
Flaskamp
,
P.
Koidl
, and
C.
Wild
,
Surf. Coat. Technol.
47
,
156
(
1991
).
76.
A. J.
Wagner
,
G. M.
Wolfe
, and
D. H.
Fairbrother
,
J. Chem. Phys.
120
,
3799
(
2004
).
77.
J. S.
Foord
,
L. C.
Hian
, and
R. B.
Jackman
,
Diamond Relat. Mater.
10
,
710
(
2001
).
78.
A.
Izumi
,
T.
Ueno
,
Y.
Miyazaki
,
H.
Oizumi
, and
I.
Nishiyama
,
Thin Solid Films
516
,
853
(
2008
).
79.
See supplementary material at E-JVTBD9-28-072003 for XP spectra, comparable to Fig. 6, showing AO and AH treatment of a film deposited from electron irradiation of Au(acac)Me2 performed on a SiO2 substrate.
You do not currently have access to this content.