Skip to main content
Log in

Negative Pressure Transients with Mechanical Heart-Valve Closure: Correlation between In Vitro and In Vivo Results

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Negative pressure transients (NPT) recorded in a single closing event of mechanical valves in the mitral position in an in vitro setup are compared with data recorded in the left atrium in vivo with the valves implanted in the mitral position in an animal model. The loading at valve closure (dP/dt_CL) computed from the in vivo ventricular pressure recording (ranging from 700 to 2300 mm Hg/s) agreed with the magnitudes predicted in our earlier in vitro experiments (750-3000 mm Hg/s). The NPT signals and the corresponding power spectral density plots from the in vivo data were in qualitative agreement with those recorded in vitro. The NPT magnitudes were found to be below the vapor pressure for blood in mechanical valves with rigid occluders suggesting a potential for the valve to cavitate in vivo. Our in vivo results also suggest that the valves with flexible occluders are less likely to cavitate. The correlation of the in vitro and in vivo data also suggests that the flexibility of valve housing used in the in vitro studies is not an important factor in the dynamics of mechanical valve closure in vivo. © 1998 Biomedical Engineering Society.

PAC98: 8745Hw, 8790+y

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Chandran, K. B., C. S. Lee, and L. D. Chen. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: Correlation with cavitation initiation. J. Heart Valve Dis.(Suppl. I) 3:S65-S76, 1994.

    Google Scholar 

  2. Chandran, K. B., and S. Aluri. Mechanical valve closing dynamics: Relationship between velocity of closing, pressure transients, and cavitation initiation. Ann. Biomed. Eng.25:926-938, 1997.

    Google Scholar 

  3. Dexter, E. U., S. Aluri, R. R. Radcliffe, H. Zhu, D. D. Carlson, T. E. Heilman, W. E. Richenbacher, and K. B. Chandran. Negative pressure transients in vivowith mechanical valves in the mitral position: Effect of occluder flexibility (abstract). Ann. Biomed. Eng.(Suppl. 1) 25:S-23, 1997.

    Google Scholar 

  4. Dexter, E. U., S. Aluri, R. R. Radcliffe, H. Zhu, D. D. Carlson, T. E. Heilman, K. B. Chandran, and W. E. Richenbacher. In vivodemonstration of cavitation potential of a mechanical heart valve (unpublished).

  5. Dimitri, W. R., and B. T. Williams. Fracture of the Duromedics mitral valve housing with leaflet escape. J. Cardiovasc. Surg.31:41-46, 1990.

    Google Scholar 

  6. Garrison, L. A., T. C. Lamson, S. Deutsch, D. B. Geselowitz, R. P. Gaumond, and J. M. Tarbell. An in-vitroinvestigation of prosthetic heart valve cavitation in blood. J. Heart Valve Dis.(Suppl. I) 3:S8-S24, 1994.

    Google Scholar 

  7. Graf, T., H. Reul, W. Dietz, R. Wilmes, and G. Rau. Cavitation at mechanical heart valves under simulated physiological conditions. J. Heart Valve Dis.1:131-141, 1992.

    Google Scholar 

  8. Graf, T., H. Reul, C. Detlefs, R. Wilmes, and G. Rau. Causes and formation of cavitation in mechanical heart valves. J. Heart Valve Dis.(Suppl. I) 3:S49-S64, 1994.

    Google Scholar 

  9. Guo, G. X., C. C. Xu, and N. H. C. Hwang. The closing velocity of Baxter Duromedic heart valve prostheses. Trans. ASAIO36:M529-M532, 1990.

    Google Scholar 

  10. Guo, G. X., P. Adlparvar, M. Howanec, J. Roy, R. Kafesjian, and C. Kingsbury. Effect of structural compliance on cavitation threshold measurement of mechanical heart valves. J. Heart Valve Dis.(Suppl. I) 3:S77-S84, 1994.

    Google Scholar 

  11. Kafesjian, R., M. Howanec, G. D. Ward, L. Diep, L. S. Wagstaff, and R. Rhee. Cavitation damage of pyrolytic carbon in mechanical heart valves. J. Heart Valve Dis.(Suppl. I) 3:S2-S7, 1994.

    Google Scholar 

  12. Klepetko, W., A. Moritz, G. Mlzoch, H. Schurawitzki, E. Domanis, and E. J. Wolner. Leaflet fracture in Edwards- Duromedics bileaflet valves. J. Thorac. Cardiovasc. Surg.97:90-94, 1989.

    Google Scholar 

  13. Kumar, N., S. Balasundaram, M. Rickard, N. al Halees, and C. M. Duran. Leaflet embolization from Duromedics valves: A report of two cases. Thorac. Cardiovasc. Surgeon.39:382-3, 1991.

    Google Scholar 

  14. Lamson, T. C., G. Rosenberg, D. B. Geselowitz, S. Deutsch, D. R. Stinebring, J. A. Frangos, and J. M. Tarbell. Relative blood damage in the three phases of a prosthetic valve flow cycle. Trans. ASAIO39:M626-M633, 1993.

    Google Scholar 

  15. Lee, C. S., K. B. Chandran, and L. D. Chen. Cavitation dynamics of mechanical heart valve prostheses. Artif. Org.18:758-767, 1994.

    Google Scholar 

  16. Lee, C. S., K. B. Chandran, and L. D. Chen. Cavitation dynamics of Medtronic Hall mechanical heart valve prosthesis: Fluid squeezing effect. ASME J. Biomech. Eng.118:97- 105, 1996.

    Google Scholar 

  17. Lee, C. S., S. Aluri, and K. B. Chandran. Effect of valve holder flexibility on cavitation initiation with mechanical heart valve prostheses: An in vitrostudy. J. Heart Valve Dis.5:104-113, 1996.

    Google Scholar 

  18. Lee, C. S., and K. B. Chandran. Instantaneous backflow through peripheral clearance of Medtronic-Hall disc valve at the moment of closure. Ann. Biomed. Eng.22:371-380, 1994.

    Google Scholar 

  19. Lee, C. S., and K. B. Chandran. Numerical simulation of instantaneous backflow through central clearance of bileaflet mechanical heart valves at the moment of closure: Shear stress and pressure fields within the clearance. Med. Biol. Eng. Comput.33:257-263, 1995.

    Google Scholar 

  20. Leuer, L. Dynamics of the mechanical valves in the artificial heart. In: Proceedings of the 40th Annual Conference of Engineering in Medicine and Biology (ACEMB). Washington, D.C.: The Alliance for Engineering in Medicine and Biology, 1987, p. 82.

    Google Scholar 

  21. Richard, G., A. Beavan, and P. Strzepa. Cavitation threshold ranking and erosion characteristics of bileaflet heart valve prostheses. J. Heart Valve Dis.(Suppl. I) 3:S94-S101, 1994.

    Google Scholar 

  22. Wu, Z. J., Y. Wang, and N. H. C. Hwang. Occluder closing behavior: A key factor in mechanical heart valve cavitation. J. Heart Valve Dis.(Suppl. I) 3:S25-S34, 1994.

    Google Scholar 

  23. Wu, Z. J., M. C. S. Shu, D. R. Scott, and N. H. C. Hwang. The closing behavior of Medtronic Hall mechanical heart valves. ASAIO J.40:M702-M706, 1994.

    Google Scholar 

  24. Wu, Z. J., B. Z. Gao, and N. H. C. Hwang. Transient pressure at closing of a monoleaflet valve prostheses: Mounting compliance effect. J. Heart Valve Dis.4:553-567, 1995.

    Google Scholar 

  25. Zapanta, C. M., E. G. Liszka, Jr., T. C. Lamson, D. R. Stinebring, S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. A method for real-time in vitroobservation of cavitation on prosthetic heart valves. ASME J. Biomech. Eng.116:460- 468, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, K.B., Dexter, E.U., Aluri, S. et al. Negative Pressure Transients with Mechanical Heart-Valve Closure: Correlation between In Vitro and In Vivo Results. Annals of Biomedical Engineering 26, 546–556 (1998). https://doi.org/10.1114/1.79

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.79

Navigation