Skip to main content
Log in

Entrainment of Intestinal Slow Waves with Electrical Stimulation Using Intraluminal Electrodes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether the intestinal stimulation would be feasible using a less invasive method: intraluminal electrodes. The study was performed in nine healthy hound dogs (15–26 kg). Four pairs of electrodes were implanted on the serosa of the jejunum at an interval of 5 cm with the most proximal pair 35 cm beyond the pylorus. An intestinal fistula was made 20 cm beyond the pylorus. Simultaneous recordings of intestinal myoelectrical activity were made for 2 h in the fasting state from both intraluminal and serosal electrodes. Various pacing parameters were tested. The frequency of the intestinal slow wave recorded from the intraluminal electrodes was identical to that from the serosal electrodes \(\left( {18.78 \pm 0.3{cpm vs 18}{.75} \pm {0}{.3cpm, }r = 0.99} \right)\), p < 0.001), and so was the percentage of normal 17–22 cycles/min waves (95.8±33.9% vs 98.16±1.33%, r=0.96, p<0.01).p < 0.01). A complete entrainment of the intestinal slow wave was achieved in every dog with electrical stimulation using intraluminal ring electrodes. The effective pacing parameters were pulse width of 70 ms, amplitude of 4 mA and frequency of 1.1 IF (intrinsic frequency). The time required for the entrainment of the intestinal slow wave with intraluminal pacing was 25.0±2.1s. The maximum driven frequency was found to be 1.43±0.01 IF. The results reveal that intraluminal pacing is an effective and efficient method for the entrainment of intestinal slow waves. It may become a potential approach for the treatment of intestinal motor disorders associated with myoelectrical abnormalities. © 2000 Biomedical Engineering Society.

PAC00: 8754Dt, 8719Ff, 8717Nn

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abo, M., J. Liang, L. W. Qian, and J. D. Z. Chen. Distension-induced myoelectrical dysrhythmia and effect of intestinal pacing in dogs. Dig. Dis. Sci. 45:129–135, 2000.

    Google Scholar 

  2. Bellahsene, B. E., C. D. Lind, B. D. Schlimer, O. L. Updike, and R. W. McCallum. Acceleration of gastric emptying with electrical stimulation in canine model of gastroparesis. Am. J. Physiol. 262:G826-G834, 1992.

    Google Scholar 

  3. Bjorck, S., K. A. Kelly, and S. F. Phillips. Mechanisms of enhanced canine enteric absorption with intestinal pacing. Am. J. Physiol. 252:G548-G553, 1987.

    Google Scholar 

  4. Chen, J. D. Z., X. T. Zhao, and H. C. Lin. Intestinal transit under ileuo break: Feedback is accelerated by forward elec-trical pacing. Gastroenterology 110:A647, 1996.

    Google Scholar 

  5. Chen, J. D. Z., W. R. Stewart, and R. W. McCallum. Adap-tive spectral analysis of episodic rhythmic variations in gas-tric myoelectric potentials. IEEE Trans. Biomed. Eng. 40:128–135, 1993.

    Google Scholar 

  6. Collin, J., K. A. Kelly, and S. F. Phillips. Enhancement of absorption from the intact and transected canine small intes-tine by electrical pacing. Gastroenterology 76:1422–1428, 1968.

    Google Scholar 

  7. Collin, J., K. A. Kelly, and S. F. Phillips. Absorption from the jejunum is increased by forward and backward pacing. Br. J. Surg. 66:489–492, 1979.

    Google Scholar 

  8. Cranley, B., K. A. Kelly, V. L. W. Go, and L. A. McNichols. Enhancing the anti-dumping effect of roux gastrojejunostomy with intestinal pacing. Ann. Surg. 198:516–524, 1983.

    Google Scholar 

  9. Cullen, J., and K. A. Kelly. The future of intestinal pacing. Gastroenterol. Clin. North Am. 23:391–402, 1994.

    Google Scholar 

  10. Eagon, J. C., and K. A. Kelly. Effects of gastric pacing on canine gastric motility and emptying. Am. J. Physiol. 265:G767-G774, 1993.

    Google Scholar 

  11. Eagon, J. C., and K. A. Kelly. Effect of electrical stimulation on gastric electrical activity, motility and emptying. Neuro-gastroenterol. Motil. 7:39–45, 1995.

    Google Scholar 

  12. Familoni, B., T. Abell, D. Nemoto, G. Voeller, and B. Johnson. Efficacy of electrical stimulation at frequencies higher than basal rate in canine stomach. Dig. Dis. Sci. 42:892–897, 1997.

    Google Scholar 

  13. Gladen, H. E., and K. A. Kelly. Enhancing absorption in the canine short bowel syndrome by intestinal pacing. Surgery (St. Louis) 88:281–286, 1980.

    Google Scholar 

  14. Grundfest-Broniatowski, S., A. Moritz, L. Ilyes, G. Jacobs, J. Kasick, E. Olsen, and Y. Nose. Voluntary control of an ileal pouch by coordinated electrical stimulation: A pilot study in the dog. Dis. Colon Rectum 31:261–267, 1988.

    Google Scholar 

  15. Hinder, R. A., and K. A. Kelly. Human gastric pacesetter potential: Site of origin, spread and response to gastric trans-action and proximal gastric vagotomy. Am. J. Surg. 133:29–33, 1978.

    Google Scholar 

  16. Hocking, M. P., S. B. Vogel, and C. A. Sninsky. Human gastric myoelectrical activity and gastric emptying following gastric surgery and with pacing. Gastroenterology 103:1811–1816, 1992.

    Google Scholar 

  17. Kelly, K. A. Differential responses of the canine gastric cor-pus and antrum to electrical stimulation. Am. J. Physiol. 226:230–234, 1974.

    Google Scholar 

  18. Kelly, K. A. Pacing the gut. Gastroenterology 103:1967–1969, 1992.

    Google Scholar 

  19. Layzell, T., and J. Collin. Retrograde electrical pacing of the small intesttine?A new treatment for the short bowel syndrome? Br. J. Surg. 68:711–713, 1981.

    Google Scholar 

  20. Lin, Z. Y., R. W. McCallum, B. D. Schirmer, and J. D. Z. Chen. Effects of pacing parameters on entrainment of gastric slow waves in patients with gastroparesis. Am. J. Physiol. 274:G186-G191, 1998.

    Google Scholar 

  21. Lin, X. M., L. Peters, M. Zhang, and J. D. Z. Chen. Entrain-ment of gastric and small intestinal slow waves with electri-cal stimulation in dogs. Dig. Dis. Sci. 45:652–656, 2000.

    Google Scholar 

  22. McCallum, R. W., J. D. Z. Chen, Z. Y. Lin, B. D. Schirmer, R. D. Williams, and R. A. Ross. Gastric pacing improves emptying and symptoms in patients with gastroparesis [see comments]. Gastroenterology 114:456–461, 1998.

    Google Scholar 

  23. Miedema, B. W., and K. A. Kelly. The rous stasis syndrome: Treatment by pacing and prevention by use of an “uncut” roux limb. Arch. Surg. (Chicago) 127:295–300, 1992.

    Google Scholar 

  24. Miedema, B. W., M. G. Sarr, and K. A. Kelly. Pacing the human stomach. Surgery (St. Louis) 111:143–150, 1992.

    Google Scholar 

  25. Moran, J. M., and D. C. Nabseth. Electrical stimulation of the bowel. Arch. Surg. (Chicago) 91:449–451, 1965.

    Google Scholar 

  26. Morrison, P., B. W. Miedema, L. Kohler, and K. A. Kelly. Electrical dysrhythmias in the roux jejunal limb: Cause and treatment. Am. J. Surg. 160:252–256, 1990.

    Google Scholar 

  27. O'Connell, P. R., and K. A. Kelly. Enteric transit and ab-sorption after canine ileostomy: Effect of pacing. Arch. Surg. (Chicago) 122:1011–1017, 1982.

    Google Scholar 

  28. Qian, L. W., X. M. Lin, and J. D. Z. Chen. Normalization of atropine-induced postprandial dysrhythmias with gastric pac-ing. Am. J. Physiol. 276:G387-G392, 1999.

    Google Scholar 

  29. Quast, D. C., A. C. Beall, and M. E. DeBakey. Clinical evaluation of the gastrointestinal pacer. Surg. Gyn. Obstet. 120:35–37, 1965.

    Google Scholar 

  30. Reiser, S. B., H. F. Weiser, V. Schusdziarra, and J. R. Stew-ert. Effect of pacing on small intestinal motor activity and hormonal response in dogs. Dig. Dis. Sci. 34:579–584, 1989.

    Google Scholar 

  31. Reiser, S. B., V. Schusdziarra, E. Bollschweiller, A. H. Hölscher, and J. R. Siewert. Effect of enteric pacing on intestinal motility and hormone secretion in dogs with short bowel. Gastroenterology 101:100–106, 1991.

    Google Scholar 

  32. Richter, H. M., and K. A. Kelly. Effect of transection and pacing on human jejunal pacesetter potentials. Gastroenter-ology 91:1380–1385, 1986.

    Google Scholar 

  33. Sarna, S. K., and E. E. Daniel. Electrical stimulation of gastric electrical control activity. Am. J. Physiol. 255:125–131, 1973.

    Google Scholar 

  34. Sarna, S. K., and E. E. Daniel. Electrical stimulation of small intestinal electrical control activity. Gastroenterology 69:660–667, 1975.

    Google Scholar 

  35. Sawchuk, A., W. Nogami, S. Goto, J. Young, J. A. Grosfeld, J. Lohmuller, M. D. Grosfeld, and J. L. Grosfeld. Reverse electrical pacing improves intestinal absorption and transit time. Surgery (St. Louis) 100:454–459, 1986.

    Google Scholar 

  36. Waterfall, W. E., D. Miller, and D. N. Ghista. Electrical stimulation of the human stomach. Dig. Dis. Sci. 30:799, 1985.

    Google Scholar 

  37. Textbook of Gastroenterology, edited by T. Yamata, D. H. Alpers, C. Owyang, D. W. Powell, and F. E. Silverstein. Philadelphia: Lippincott, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Hayes, J., Peters, L.J. et al. Entrainment of Intestinal Slow Waves with Electrical Stimulation Using Intraluminal Electrodes. Annals of Biomedical Engineering 28, 582–587 (2000). https://doi.org/10.1114/1.294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.294

Navigation