Skip to main content
Log in

Ion Channel Basis for Alternans and Memory in Cardiac Myocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Beat-to-beat alternation in action potential morphology (alternans) in individual cardiac cells may be important in the development of ventricular tachycardia and fibrillation. So far, it has been difficult to identify the cause for alternans at the ion channel level because computer models and experiments that display alternans also simultaneously exhibit other confounding rhythm patterns, including those attributable to short timescale memory effects. To address this difficulty, we have developed an eigenmode method to study the dynamics of detailed cardiac cell models under constant pacing. The method completely separates these effects from one another in the linear regime, allowing each to be studied individually. For the Beeler–Reuter ion channel model, the fundamental difference between the alternans and memory modes was found to be rooted in the difference in the relative phasings of the x_{1} and f gate perturbations associated with the slow outward and slow inward currents, respectively. The importance of this relative phasing was analyzed with the help of two new analytical methods. For the alternans case, the relative phasing produced constructive interference between the two currents large enough to reverse the perturbation in membrane potential from beat to beat. The opposite was true of the memory mode. © 2003 Biomedical Engineering Society.

PAC2003: 8716Uv, 8719Hh, 8717Aa, 8719Nn

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bär, M., and M. Eiswirth. Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E48:R1635–R1637, 1993.

    Google Scholar 

  2. Beeler, G. W., and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. (London)251:1–59, 1975.

    Google Scholar 

  3. Courtemanche, M., and A. T. Winfree. Reentrant rotating waves in a Beeler–Reuter-based model of two-dimensional cardiac electrical activity. Int. J. Bifurcation Chaos Appl. Sci. Eng. 1:431–444, 1991.

    Google Scholar 

  4. Courtemanche, M. Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity. Chaos6:579–600, 1996.

    Google Scholar 

  5. Davidenko, J. M., A. V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature (London)355:349–351, 1992.

    Google Scholar 

  6. Dennis, J. E., and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Philadelphia, PA: SIAM, 1996, 378 pp.

    Google Scholar 

  7. Fenton, F. H., E. M. Cherry, H. M. Hastings, and S. J. Evans. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos12:852–892, 2002.

    Google Scholar 

  8. Fox, J. J., J. L. McHarg, and R. F. Gilmour. Ionic mechanism of electrical alternans. Am. J. Physiol. 282:H516–H530, 2002.

    Google Scholar 

  9. Fox, J. J., E. Bodenschatz, and R. F. Gilmour. Period-doubling instability and memory in cardiac tissue. Phys. Rev. Lett. 89:138101, 2002.

    Google Scholar 

  10. Gilmour, R. F., N. F. Otani, and M. A. Watanabe. Memory and complex dynamics in cardiac Purkinje fibers. Am. J. Physiol. 272:H1826–H1832, 1997.

    Google Scholar 

  11. Gray, R. A., J. Jalife, A. V. Panfilov, W. T. Baxter, C. Cabo, J. M. Davidenko, A. M. Pertsov, P. Hogeweg, and A. T. Winfree. Mechanisms of cardiac fibrillation. Science270:1222–1225, 1995.

    Google Scholar 

  12. Gray, R. A., J. Jalife, A. Panfilov, W. T. Baxter, C. Cabo, and A. M. Pertsov. Nonstationary vortex-like reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation91:2454–2469, 1995.

    Google Scholar 

  13. Guevara, M. R., G. Ward, A. Shrier, and L. Glass. Electrical alternans and period-doubling bifurcations. IEEE Computers in Cardiology. Silver Spring, MD: IEEE Computer Society, 1984, pp. 167–170.

    Google Scholar 

  14. Hall, G. M., S. Bahar, and D. J. Gauthier. Prevalence of rate-dependent behaviors in cardiac muscle. Phys. Rev. Lett. 82:2995–2998, 1999.

    Google Scholar 

  15. Hastings, H. M., F. H. Fenton, S. J. Evans, O. Hotomaroglu, J. Geetha, K. Gittelson, J. Nilson, and A. Garfinkel. Alternans and the onset of ventricular fibrillation. Phys. Rev. E62:4043–4048, 2000.

    Google Scholar 

  16. Holden, A. V., and A. V. Panflov. Spatiotemporal chaos in a model of cardiac electrical activity. Int. J. Bifurcation Chaos Appl. Sci. Eng. 1:219–225, 1991.

    Google Scholar 

  17. Jalife, J., R. A. Gray, G. E. Morley, and J. M. Davidenko. Self-organization and the dynamical nature of ventricular fibrillation. Chaos8:79–93, 1998.

    Google Scholar 

  18. Janse, M. J., F. J. G. Wilms-Schopman, and R. Coronel. Ventricular fibrillation is not always due to multiple wavelet reentry. J. Cardiovasc. Electrophysiol. 6:512–521, 1995.

    Google Scholar 

  19. Karma, A. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett. 71:1103–1106, 1993.

    Google Scholar 

  20. Karma, A. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos4:461–472, 1994.

    Google Scholar 

  21. Koller, M. L., M. L. Riccio, and R. F. Gilmour. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am. J. Physiol. 275:H1635–H1642, 1998.

    Google Scholar 

  22. Luo, C., and Y. Rudy. A dynamic model of the cardiac ventricular action potential. Circ. Res. 74:1071–1096, 1994.

    Google Scholar 

  23. Nolasco, J. B., and R. W. Dahlen. A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25:191–196, 1968.

    Google Scholar 

  24. Otani, N. F., and R. F. Gilmour. Memory models for the electrical properties of local cardiac systems. J. Theor. Biol. 187:409–436, 1997.

    Google Scholar 

  25. Panfilov, A. V. Spiral breakup as a model of ventricular fibrillation. Chaos8:57–64, 1998.

    Google Scholar 

  26. Pastore, J. M., S. D. Girouard, K. R. Laurita, F. G. Akar, and D. S. Rosenbaum. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation99:1385–1394, 1999.

    Google Scholar 

  27. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge University Press, 1992, 994 pp.

    Google Scholar 

  28. Qu, Z., J. Weiss, and A. Garfinkel. Cardiac electrical restitution properties and stability of reentrant spiral waves: A simulation study. Am. J. Physiol. 276:H269–H283, 1999.

    Google Scholar 

  29. Qu, Z., A. Garfinkel, P. Chen, and J. N. Weiss. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation102:1664–1670, 2000.

    Google Scholar 

  30. Tolkacheva, E. G., D. G. Schaeffer, D. J. Gautheir, and W. Krassowska. Condition for alternans and stability of the 1:1 response pattern in a “memory” model of paced cardiac dynamics. Phys. Rev. E67:031904, 2003.

    Google Scholar 

  31. Vinet, A. Memory and bistability in a one-dimensional loop of model cardiac cells. J. Biol. Syst. 7:451–473, 1999.

    Google Scholar 

  32. Watanabe, M. A., F. H. Fenton, S. J. Evans, H. M. Hastings, and A. Karma. Mechanisms for discordant alternans. J. Cardiovasc. Electrophysiol. 12:196–206, 2001.

    Google Scholar 

  33. Weiss, J. N., A. Garfinkel, H. S. Karagueuzian, Z. Qu, and P. Chen. Chaos and the transition to ventricular fibrillation: A new approach to antiarrhythmic drug evaluation. Circulation99:2819–2826, 1999.

    Google Scholar 

  34. Winfree, A. T. When Time Breaks Down. Princeton, NJ: Princeton University Press, 1987, 339 pp.

  35. Zipes, D. P., and H. J. J. Wellens. Sudden cardiac death. Circulation98:2334–2351, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Otani, N.F. Ion Channel Basis for Alternans and Memory in Cardiac Myocytes. Annals of Biomedical Engineering 31, 1213–1230 (2003). https://doi.org/10.1114/1.1616930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1616930

Navigation