Skip to main content
Log in

A Model for Transport and Dispersion in the Circulatory System Based on the Vascular Fractal Tree

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Materials are distributed throughout the body of mammals by fractal networks of branching tubes. Based on the scaling laws of the fractal structure, the vascular tree is reduced to an equivalent one-dimensional, tube model. A dispersion–convection partial differential equation with constant coefficients describes the heterogeneous concentration profile of an intravascular tracer in the vascular tree. A simple model for the mammalian circulatory system is built in entirely physiological terms consisting of a ring shaped, one-dimensional tube which corresponds to the arterial, venular, and pulmonary trees, successively. The model incorporates the blood flow heterogeneity of the mammalian circulatory system. Model predictions are fitted to published concentration-time data of indocyanine green injected in humans and dogs. Close agreement was found with parameter values within the expected physiological range. © 2003 Biomedical Engineering Society.

PAC2003: 8710+e, 8719Hh, 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Audi, S. H., J. H. Linehan, G. S. Krenz, and C. A. Dawson. Accounting for the heterogeneity of capillary transit times in modeling multiple indicator dilution data. Ann. Biomed. Eng.26:914–930, 1998.

    Google Scholar 

  2. Bassingthwaighte, J. B., L. Liebovitch, and B. J. West. Fractal Physiol. Oxford: Oxford University Press, 1994.

    Google Scholar 

  3. Beard, D., and J. B. Bassingthwaighte. Advection and diffusion of substances in biological tissues with complex vascular networks. Ann. Biomed. Eng.28:253–268, 2000.

    Google Scholar 

  4. Boxenbaum, H.Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J. Pharmacokinet Biopharm.10:201–227, 1982.

    Google Scholar 

  5. Brown, J. H., and G. B. West, eds. Scaling in Biology. Oxford: Oxford University Press, 2000.

    Google Scholar 

  6. Edwards, D. A.A general theory of the macrotrasport of nondepositing particles in the lung by convective dispersion. J. Aerosol Sci.25:543–565, 1994.

    Google Scholar 

  7. Ellsworth, M. L., A. Liu, B. Dawamt, A. S. Popel, and R. N. Pittman. Analysis of vascular pattern and dimensions in arteriolar networks of the retractor muscle in young hamsters. Microvasc. Res.34:168–183, 1987.

    Google Scholar 

  8. Fung, Y. C. Biomechanics: Circulation. New York: Springer, 1997.

    Google Scholar 

  9. Gerlowski, L. E., and R. K. Jain. Physiologically based pharmacokinetic modeling: principles and applications. J. Pharm. Sci.72:1103–1127, 1983.

    Google Scholar 

  10. Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology. Philadelphia: Saunders, 2000.

    Google Scholar 

  11. Hashimoto, M., and G. Watanabe. Simultaneous measurement of effective hepatic blood flow and systemic circulation. Hepatogastroenterology47:1669–1674, 2000.

    Google Scholar 

  12. Horsfield, K.Diameters, generations, and orders of branches in the bronchial tree. J. Appl. Physiol.68:457–461, 1990.

    Google Scholar 

  13. Huang, W., R. T. Yen, M. McLaurine, and G. Bledsoe. Morphometry of the human pulmonary vasculature. J. Appl. Physiol.81:2123–2133, 1996.

    Google Scholar 

  14. King, R. B., G. M. Raymond, and J. B. Bassingthwaighte. Modeling blood flow heterogeneity. Ann. Biomed. Eng.24:352–372, 1996.

    Google Scholar 

  15. Krejcie, T. C., M. J. Avram, W. B. Gentry, C. U. Niemann, M. P. Janowski, and T. K. Henthorn. A recirculatory model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis of arterial and mixed venous data from dogs. J. Pharmacokinet Biopharm.25:169–190, 1997.

    Google Scholar 

  16. LaBarbera, M.Principles of design of fluid transport systems in zoology. Science249:992–1000, 1990.

    Google Scholar 

  17. Lefevre, J.Teleonomical optimization of a fractal model of the pulmonary arterial bed. J. Theor. Biol.102:225–248, 1983.

    Google Scholar 

  18. Niemann, C. U., T. K. Henthorn, T. C. Krejcie, C. A. Shanks, C. Enders-Klein, and M. Avram. Indocyanine green kinetics characterize blood volume and flow distribution and their alteration by propranolol. J. Clin. Pharm. Ther.67:342–350, 2000.

    Google Scholar 

  19. Oliver, R. E., A. F. Jones, and M. Rowland. A whole-body physiologically based pharmacokinetic model incorporating dispersion concepts: Short and long time characteristics. J. Pharmacokinet Biopharm.28:27–55, 2001.

    Google Scholar 

  20. Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng.28:1281–1299, 2000.

    Google Scholar 

  21. Perl, W., and F. P. Chinard. A convection–diffusion model of indicator transport through an organ. Circ. Res.12:273–298, 1968.

    Google Scholar 

  22. Picker, O., G. Wietasch, T. W. Scheeren, and J. O. Arndt. Determination of total blood volume by indicator dilution: A comparison of mean transit time and mass conservation principle. Intensive Care Med.27:767–774, 2001.

    Google Scholar 

  23. Roberts, M. S., and M. Rowland. A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations. J. Pharmacokinet Biopharm.14:227–260, 1986.

    Google Scholar 

  24. Scherer, P. W., L. H. Shendalman, and N. M. Greene. Simultaneous diffusion and convection in single breath lung washout. Bull. Math. Biophys.34:393–412, 1972.

    Google Scholar 

  25. Thomée, V. In: Handbook of Numerical Analysis, edited by Ciarlet, P. G., and J. L. Lions. Amsterdam: Elsevier, 1990, Vol. 1, pp. 5–195.

    Google Scholar 

  26. Unice, K. M., and B. E. Logan. The insignificant role of hydrodynamic dispersion on bacterial transport. J. Environ. Eng.126:491–500, 2000.

    Google Scholar 

  27. van Beek, J. H., S. A. Roger, and J. B. Bassingthwaighte. Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol.257:H1670-H1680, 1989.

    Google Scholar 

  28. Vicini, P., R. C. Bonadonna, M. Lehtovirta, L. C. Groop, and C. Cobelli. Estimation of blood flow heterogeneity in human skeletal muscle using intravascular tracer data: Importance for modeling transcapillary exchange. Ann. Biomed. Eng.26:764–774, 1998.

    Google Scholar 

  29. Wagner, J. G. Pharmacokinetics for the Pharmaceutical Scientist. Lancaster, PA: Technomic, 1993.

    Google Scholar 

  30. Weibel, E. R. Morphometry of the Human Lung. Berlin: Springer, 1963.

    Google Scholar 

  31. Weiss, M., and W. Foster. Pharmacokinetic model based on circulatory transport. Eur. J. Clin. Pharmacol.16:287–293, 1979.

    Google Scholar 

  32. West, G. B., J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology. Science276:122–126, 1997.

    Google Scholar 

  33. West, G. B., J. H. Brown, and B. J. Enquist. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science284:1677–1679, 1999.

    Google Scholar 

  34. Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech.25:1303–1310, 1992.

    Google Scholar 

  35. Zamir, M.On fractal properties of arterial trees. J. Theor. Biol.197:517–526, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokoumetzidis, A., Macheras, P. A Model for Transport and Dispersion in the Circulatory System Based on the Vascular Fractal Tree. Annals of Biomedical Engineering 31, 284–293 (2003). https://doi.org/10.1114/1.1555627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1555627

Navigation