Skip to main content
Log in

Cooling and Rewarming for Brain Ischemia or Injury: Theoretical Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A three-dimensional model is developed in this study to examine the transient and steady state temperature distribution in the brain during selective brain cooling (SBC) and subsequent rewarming. Selective brain cooling is induced through either wearing a cooling helmet or packing the head with ice. The ischemic region of the brain is simulated through reducing the blood perfusion rate to 20% of its normal value. The geometric and thermal properties and physiological characteristics for each layer, as well as the arterial blood temperature, are used as the input to the Pennes bioheat equation. Our data suggest that rapid cooling of the brain gray matter can be achieved by SBC on the head surface (26 min for adults versus 15 min for infants). Suboptimal thermal contact between the head surface and the coolant in most commercially available cooling helmets is suspected to be the main reason for delayed cooling in SBC as compared to the ice packing. The study has also demonstrated that the simulated 3 °C/h passive rewarming rate by exposing the head to room temperature after removing the source of cooling may be too rapid. © 2003 Biomedical Engineering Society.

PAC2003: 8710+e, 8719La, 8719Pp, 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bernard, S. A., B. M. Jones, and M. Buist. Experience with prolonged induced hypothermia in severe head injury. Crit. Care3:167–172, 1999.

    Google Scholar 

  2. Busto, R., W. D. Dietrich, M. Y.-T. Globus, I. Valdes, P. Scheinberg, and M. D. Ginsberg. Small differences in intraichemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab.7:729–738, 1987.

    Google Scholar 

  3. Clifton, G. L., E. R. Miller, S. C. Choi, H. S. Levin, S. McCauley, K. R. Smith, Jr., J. P. Muizelaar, F. C. Wagner, Jr., D. W. Marion, T. G. Luerssen, R. M. Chesnut, and M. Schwartz. Lack of effect of induction of hypothermia after acute brain injury. N. Engl. J. Med.344:556–563, 2001.

    Google Scholar 

  4. el Nasr, M. Deif, J. Nuglisch, and J. Krieglatein. Prevention of ischemia-induced hypothermia by controlling the environmental temperature. J. Pharmac. Meth.27:23–26, 1992.

    Google Scholar 

  5. Dietrich, W. D.The importance of brain temperature in cerebral injury. J. Neurotrauma9:s475–485, 1992.

    Google Scholar 

  6. Gal, R., I. Cundrle, I. Zimova, and M. Smrcka. Mild hypothermia therapy for patients with severe brain injury. Clinical Neurology and Neurosurgery104:318–321, 2002.

    Google Scholar 

  7. Gelman, B., C. L. Schleien, A. Lohe, and J. W. Kuluz. Selective brain cooling in infant piglets after cardiac arrest and resuscitation. Crit. Care Med.24:1009–1017, 1996.

    Google Scholar 

  8. Jiang, J. Y., M. Yu, and C. Zhu. Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1-year follow-up review of 87 cases. J. Neurosurg.93:546–549, 2000.

    Google Scholar 

  9. Kolios, M. C., A. E. Worthington, M. D. Sherar, and J. W. Hunt. Experimental evaluation of two simple thermal models using transient temperature analysis. Phys. Med. Biol.43:3325–3340, 1998.

    Google Scholar 

  10. Krieger, D. W., M. A. De Georgia, A. Abou-Chebl, J. C. Andrefsky, C. A. Sila, I. L. Katzan, M. R. Mayberg, and A. J. Furlan. Cooling for acute ischemic brain damage (cool aid): An open pilot study of induced hypothermia in acute ischemic stroke. Stroke32:1847–1854, 2001.

    Google Scholar 

  11. Ku, Y., L. D. Montgomery, and B. Webbon. Hemodynamic and thermal responses to head and neck cooling in men and woman. Am. J. Phys. Med. Rehabil.75:443–450, 1996.

    Google Scholar 

  12. Kuhnen, G., R. Bauer, and B. Walter. Controlled brain hypothermia by extracorporeal carotid blood cooling at normothermic trunk temperatures in pigs. J. Neurosci. Methods89:167–174, 1999.

    Google Scholar 

  13. Maier, C., G. Sun, and D. Kunis. Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurologic outcome and infarct size. J. Neurosurg.94:90–96, 2001.

    Google Scholar 

  14. Marion, D. W., L. E. Penrod, S. F. Kelsey, W. D. Obrist, P. M. Kochanek, A. M. Palmer, S. R. Wisniewski, and S. T. DeKosky. Treatment of traumatic brain injury with moderate hypothermia. N. Engl. J. Med.336:540–546, 1997.

    Google Scholar 

  15. Marion, D. W., Y. Leonov, M. Ginsberg, L. M. Katz, P. M. Kochanek, A. Lechleuthner, E. M. Nemoto, W. Obrist, P. Safar, F. Sterz, S. A. Tisherman, R. J. White, F. Xiao, and H. Zar. Resuscitative hypothermia. Crit. Care Med.24:S81-S89, 1996.

    Google Scholar 

  16. Markgraf, C., G. Clifton, and M. Moody. Treatment window for hypothermia in brain injury. J. Neurosurg.95:979–983, 2001.

    Google Scholar 

  17. Minamisawa, H., P. Mellergard, M. L. Smith, F. Bengtsson, S. Theander, F. Boris-Moller, and B. K. Siesjo. Preservation of brain temperature during ischemia in rats. Stroke21:758–764, 1990.

    Google Scholar 

  18. Olsen, R. W., L. J. Hayes, E. H. Wissler, H. Nikaidoh, and R. C. Eberhart. Influence of hypothermia and circulatory arrest on cerebral temperature distributions. ASME J. Biomech. Eng.107:354–360, 1985.

    Google Scholar 

  19. Pennes, H. H.Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol.1:93–122, 1948.

    Google Scholar 

  20. Schwab, S., S. Schwarz, M. Spranger, E. Keller, M. Bertram, and W. Hacke. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke29:2461–2466, 1998.

    Google Scholar 

  21. Segawa, H.Tomographic cerebral blood flow measurement using xenon inhalation and serial CT scanning: Normal values and its validity. Neurosurg. Rev.8:27–33, 1985.

    Google Scholar 

  22. Shiozaki, T., H. Sugimoto, M. Taneda, H. Yoshida, A. Iwai, T. Yoshioka, and T. Sugimoto. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J. Neurosurg.79:363–368, 1993.

    Google Scholar 

  23. Soukup, J., A. Zauner, E. M. Doppenberg, M. Menzel, C. Gilman, H. F. Young, and R. Bullock. The importance of brain temperature in patients after severe head injury: Relationship to intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and outcome. J. Neurotrauma.19:559–571, 2002.

    Google Scholar 

  24. Stone, J. G., W. L. Young, C. R. Smith, R. A. Solomon, A. Wald, N. Ostapkovich, and D. B. Shrebnick. Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed?Anesthesiology82:344–351, 1995.

    Google Scholar 

  25. Thoresen, M., and A. Whitelaw. Cardiovascular changes during mild therapeutic hypothermia and rewarming in infants with hypoxic-ischemic encephalopathy. Pediatrics106:92–99, 2000.

    Google Scholar 

  26. Van Leeuwen, G. M. J., Hand, J. W. Lagendijk, V. Azzopardi, and A. D. Edwards. Numerical modeling of temperature distributions within the neonatal head. Pediatr. Res.48:351–356, 2000.

    Google Scholar 

  27. Van Leeuwen, G. M. J., J. W. Lagendijk, B. J. Van Leersum, A. P. M. Zwamborn, S. N. Hornsleth, and A. N. T. Kotte. Calculation of change in brain temperatures due to exposure to a mobile phone. Phys. Med. Biol.44:2367–2379, 1999.

    Google Scholar 

  28. Wass, C. T., W. L. Lanier, R. E. Hofer, B. W. Scheithauer, and A. G. Andrews. Temperature changes of & ges;1 °C alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology83:325–335, 1995.

    Google Scholar 

  29. Wass, C. T., J. R. Waggoner, III, D. G. Cable, H. V. Schaff, D. R. Schroeder, and W. L. Lanier. Selective convective brain cooling during hypothermic cardiopulmonary bypass in dogs. Ann. Thorac. Surg.66:2008–2014, 1998.

    Google Scholar 

  30. Xu, X., P. Tikuisis, and G. Giesbrecht. A mathematical model for human brain cooling during cold-water near-drowning. J. Appl. Physiol.86:265–272, 1999.

    Google Scholar 

  31. Yonas, H., J. M. Darby, E. C. Marks, S. R. Durham, and C. Maxwell. CBF measured by Xe–CT: Approach to analysis and normal values. J. Cereb. Blood Flow Metab.11:716–725, 1991.

    Google Scholar 

  32. Zhu, L., and L. X. Xu. Evaluation of the effectiveness of transurethral radio frequency hyperthermia in the canine prostate: Temperature distribution analysis. ASME J. Biomech. Eng.121:584–590, 1999.

    Google Scholar 

  33. Zhu, L., and C. Diao. Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury. Med. Biol. Eng. Comput.39:681–687, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, C., Zhu, L. & Wang, H. Cooling and Rewarming for Brain Ischemia or Injury: Theoretical Analysis. Annals of Biomedical Engineering 31, 346–353 (2003). https://doi.org/10.1114/1.1554924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1554924

Navigation