Skip to main content

Advertisement

Log in

A Device for Imposing Cyclic Strain to Cells Growing on Implant Alloys

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to develop a unique device for applying well-characterized cyclic, strain to cells growing on implant alloys. The device is based on the four-point bending principle and utilizes an electric motor, belt, and cam system to cyclically deflect a commercially pure titanium plate with cell culture wells in the middle of the plate. Analyses demonstrated that 182±3, 366±9, and 984±7 microstrain may be cyclically generated in culture areas from 0.5 to 10 Hz for up to 72 h. UMR-106 osteoblast-like cells growing on the titanium plate were subjected to these strain magnitudes at 1.5 Hz for periods of 4 or 24 h. Cells were checked for viability, total protein as a general indicator of cell number, and alkaline phosphatase activity (ALP) as an indicator of bone cell function. Cells strained at 984±7 microstrain exhibited 21%–24% more protein but 45%–49% less ALP activity than cells strained at 182±2 or 366±9 microstrain. Decreased ALP activity may indicate impaired mineralization. Results indicate the device is suitable for applying known, cyclic strain to cells growing on implant alloys and evaluating cellular responses to strain while growing on implant alloys. © 2002 Biomedical Engineering Society.

PAC2002: 8780Rb, 8768+z, 8717Ee

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anderson, K. L., and L. A. Norton. A device for the application of known simulated orthodontic forces to human cells in vitro. J. Biomech. 7:649–654, 1991.

    Google Scholar 

  2. Banes, A. J., J. Gilbert, O. Monbureau, and D. Taylor. A new vacuum–operated stress–providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J. Cell. Sci. 75:35–42, 1985.

    Google Scholar 

  3. Barbier, L., and E. Schepers. Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. Int. J. Oral Maxillofac. Implants. 12:215–223, 1997.

    Google Scholar 

  4. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72:248–254, 1976.

    Google Scholar 

  5. Boskey, A. L., S. B. Doty, R. Mendelsohn, and I. Binderman. ATP promotes ineralization in differentiating chick limb–bud mesenchymal cell cultures. Microsc. Res. Tech. 28:492–504, 1994.

    Google Scholar 

  6. Boskey A. L., and E. Paschalis. Matrix proteins and biomineralization. In: Bone Engineering, edited by J. E. Davies. Toronto, Canada: Em Squared Inc., 2000, pp. 45–61.

    Google Scholar 

  7. Brighton, C. T., S. B. Gross, D. F. Leatherwood, S. R. Pollack, B. Strafford, and J. L. Williams. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J. Bone Jt. Surg., Am. Vol. 13:320–331, 1991.

    Google Scholar 

  8. Brighton, C. T., B. J. Sennett, J. C. Farmer, J. P. Iannotti, C. A. Hansen, J. L. Williams, and J. Williamson. The inositol phosphate pathway as a mediator in the proliferative response of rat calvarial bone cells to cyclical biaxial mechanical strain. J. Orthop. Res. 10:385–393, 1992.

    Google Scholar 

  9. Brown, T. D. Techniques for mechanical stimulation of cells in vitro: A review. J. Biomech. 33:3–14, 2000.

    Google Scholar 

  10. Brunski, J. B., J. Moccia, S. R. Pollack, E. Korostoff, and D. I. Trachtenberg. The influence of functional use of endosseous dental implants on the tissue–implant interface. II clinical aspects. J. Dent. Res. 58:1970–1980, 1979.

    Google Scholar 

  11. Brunski, J. B., D. A. Puleo, and A. Nanci. Biomaterials and biomechanics of oral and maxillofacial implants: Current status and future developments. Int. J. Oral Maxillofac. Implants. 15:15–46, 2001.

    Google Scholar 

  12. Carter, D. R., E. G. Polefla, and G. S. Beaupre. Mechanical influences on skeletal regeneration and bone resorption. In: Bone Engineering, edited by J. E. Davies. Toronto, Canada: Em Squared Inc., 2000, pp. 358–366.

    Google Scholar 

  13. Eshbach, O. W. Handbook of Engineering Fundamentals, Wiley Handbook Series. 3rd ed. New York: Wiley, 1975.

    Google Scholar 

  14. Higdon, A., E. H. Ohlsen, W. B. Stiles, J. A. Weese, and W. F. Riley. Mechanics of Materials, 3rd ed., New York: Wiley, 1976.

    Google Scholar 

  15. Kaspar, D., W. Seidl, C. Neidlinger–Wilke, A. Ignatius, and L. Claes. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J. Biomech. 33:45–51, 2000.

    Google Scholar 

  16. Kudelska–Mazur, D., M. Lewandowska–Szumiel, and J. Komender. Human osteoblast in contact with various biomaterials in vitro. Ann. Transplant. 4:98–100, 1999.

    Google Scholar 

  17. Labat, B., T. Chepda, J. Frey, J. Rieu, J. L. Aurelle, M. Douet, C. Alexandre, and A. Chamson. Practice of a testing bench to study the effects of cyclic stretching on osteoblastorthopaedic ceramic interactions. Biomaterials 21:1275–1281, 2000.

    Google Scholar 

  18. Meazzini, M., C. D. Toma, J. L. Schaffer, M. L. Gray, and L. C. Gerstenfeld. Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. J. Orthop. Res. 16:170–180, 1998.

    Google Scholar 

  19. Murray, D. W., and N. Rushton. The effect of strain on bone cell prostaglandin E2 release: A new experimental method. Calcif. Tissue Int. 47:35–39, 1990.

    Google Scholar 

  20. Narisawa, S., N. Frohlander, and J. L. Millan. Inactivation of two mouse alkaline phosphaase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn. 208:432–446, 1997.

    Google Scholar 

  21. Neidlinger–Wilke, C., H. J. Wilke, and L. Claes. Cyclic stretching of human osteoblasts affects proliferation and metabolism: A new experimental method and its application. J. Orthop. Res. 1:70–78, 1994.

    Google Scholar 

  22. Neidlinger–Wilke, C., I. Stalla, L. Claes, R. Brand, I. Hoellen, S. Rubenacker, M. Arand, and L. Kinzl. Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF–release in response to cyclic strain. J. Biomech. 28:1411–1418, 1995.

    Google Scholar 

  23. O'Mahony, A., Q. Bowles, G. Woolsey, S. J. Robinson, and P. Spencer. Stress distribution in the single–unit osseointegrated dental implant: Finite element analyses of axial and off–axial loading. Implant Dent. 9:207–218, 2000.

    Google Scholar 

  24. Peverali, F. A., E. K. Basdra, and A. G. Papavassiliou. Stretch–mediated activation of selective MAPK subtypes and potentiation of AP–1 binding in human osteoblastic cells. Mol. Med. 7:68–78, 2001.

    Google Scholar 

  25. Pilliar, R. M., D. Deporter, and P. A. Watson. Tissue–implant interface: Micromovements effects. In: P. Vincenzinzi. Materials in Clinical Applications, Advances in Science and Technology, 12, Proceedings of the 8th CIMTEC World Ceramic Congress. Fanexa, Italy: Techna, 1995, pp. 569–579.

    Google Scholar 

  26. Puleo, D. A., L. A. Holleran, R. H. Doremus, and R. Bizios. Osteoblast responses to orthopedic implant materials in vitro. J. Biomed. Mater. Res. 25:711–723, 1991.

    Google Scholar 

  27. Rutherford, D. W., J. D. Bumgardner, D. B. Smith, and J. A. Gilbert. In vitro cellular/biomaterial strain simulator. 1998. Provisional Patent Application Ref 98071412.

  28. Schmidt, C., A. A. Ignatius, and L. E. Claes. Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces. J. Biomed. Mater. Res. 54:209–215, 2001.

    Google Scholar 

  29. Schwartz, Z., C. H. Lohmann, J. Oefinger, L. F. Bonewald, D. D. Dean, and B. D. Boyan. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv. Dent. Res. 13:38–48, 1999.

    Google Scholar 

  30. Soballe, K., E. S. Hansen, H. B. Rasmussen, P. H. Jorgensen, and C. Bunger. Tissue ingrowth into titanium and hydroxyapatite–coated implants during stable and unstable mechanical conditions. J. Orthop. Res. 10:285–299, 1992.

    Google Scholar 

  31. Sotoudeh, M., S. Jalali, S. Usami, J. Shy, and S. Chien. A strain device imposing dynamic and uniform equi–biaxial strain to cultured cells. Ann. Biomed. Eng. 26:181–189, 1998.

    Google Scholar 

  32. Stanford, C. M., J. A. Morcuende, and R. A. Brand. Proliferative and phenotypic responses of bone–like cells to mechanical deformation. J. Orthop. Res. 13:664–670, 1995.

    Google Scholar 

  33. Williams, J. L., J. H. Chen, and D. M. Beloli. Strain fields on cell stressing devices employing clamped circular elastic diaphragms as substrates. J. Biomech. Eng. 114:377–384, 1991.

    Google Scholar 

  34. Winston, F. K., E. J. Macarak, S. F. Gorfien, and L. E. Thibault. A system to reproduce and quantify the biomechanical environment of the cell. J. Appl. Physiol. 61:397–405, 1989.

    Google Scholar 

  35. Yamaguchi, M., N. Shimizu, Y. Shibata, and Y. Abiko. Effects of different magnitudes of tension–force on alkaline phosphatase activity in periodontal ligament cells. J. Dent. Res. 75:889–894, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, L.C., Gilbert, J.A., Elder, S.H. et al. A Device for Imposing Cyclic Strain to Cells Growing on Implant Alloys. Annals of Biomedical Engineering 30, 1242–1250 (2002). https://doi.org/10.1114/1.1529195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1529195

Navigation