Skip to main content
Log in

Solute Transport to the Endothelial Intercellular Cleft: The Effect of Wall Shear Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The interendothelial cleft is the major transport pathway across the endothelium for hydrophilic solutes including albumin and low density lipoprotein. Previous models of arterial wall transport have assumed that the entire endothelial cell surface is available for transport from the fluid (blood) phase. One of the consequences of a cleft-mediated solute uptake mechanism is the limited area available for mass transport. This effect, together with the influence of a predominantly longitudinal cleft orientation in relation to flow, dramatically alters the fluid–phase mass transport characteristics relative to what has been assumed previously in analyzing vascular solute uptake problems. We have used a finite element computational model to simulate fluid phase transport to a longitudinal endothelial cleft under realistic wall shear rate conditions. Our numerical results show reduced dependence of the mass transfer rate on the wall shear rate compared to the classical Leveque solution for mass transport in a cross-flow configuration and confirm the significance of the wall and not the fluid as the limiting resistance to transport of macromolecules. © 2002 Biomedical Engineering Society.

PAC2002: 8719Rr, 8716Uv, 8716Dg, 8710+e, 8715Vv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ackerberg, R. C., R. D. Patel, and S. K. Gupta. The heat/mass transfer to a finite strip at small Peclet numbers. J. Fluid Mech. 86:49-65, 1978.

    Google Scholar 

  2. Adamson, R. H. Microvascular endothelial cell shape and size in situ. Microvasc. Res. 46:77-88, 1993.

    Google Scholar 

  3. Adamson, R. H., and C. C. Michel. Pathways through the intercellular clefts of frog mesenteric capillaries. J. Physiol. (London) 466:303-327, 1993.

    Google Scholar 

  4. Basmadjian, D. The effect of flow and mass transport in thrombogenesis. Ann. Biomed. Eng. 18:685-709, 1990.

    Google Scholar 

  5. Caro, C. G., and R. M. Nerem. Transport of 14C-4-cholesterol between serum and wall in the perfused dog common carotid artery. Circ. Res. 32:187-205, 1973.

    Google Scholar 

  6. Chuang, P. T., H. J. Cheng, S. J. Lin, K. M. Jan, M. M. L. Lee, and S. Chien. Macromolecular transport across arterial and venous endothelium in rats. Arteriosclerosis (Dallas) 10:188-197, 1990.

    Google Scholar 

  7. Fu, B., F. E. Curry, R. H. Adamson, and S. Weinbaum. A model for interpreting the tracer labeling of interendothelial clefts. Ann. Biomed. Eng. 25:375-379, 1997.

    Google Scholar 

  8. Huang, Y., D. Rumschitzki, S. Chien, and S. Weinbaum. A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima. J. Biomech. Eng. 116:430-445, 1994.

    Google Scholar 

  9. Huang, Z. J., and J. M. Tarbell. Numerical simulation of mass transfer in porous media of blood vessel walls. Am. J. Physiol. Heart Circ. Physiol. 273:H464-H477, 1997.

    Google Scholar 

  10. Juhasz, N. M., and W. M. Deen. Mass transfer in a tube with wall flux confined to evenly spaced discrete areas. Chem. Eng. Sci. 48:1745-1752, 1993.

    Google Scholar 

  11. Leveque, M. A. Le problem de phechange de chaleur a l'interieur d'un tube cylindrique. Ann. Mines 13:256-299, 1928.

    Google Scholar 

  12. Lin, S. J., K. M. Jan, and S. Chien. Role of dying endothelial cells in transendothelial macromolecular transport. Arteriosclerosis (Dallas) 10:703-709, 1990.

    Google Scholar 

  13. Lin, S. J., K. M. Jan, S. Weinbaum, and S. Chien. Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arteriosclerosis (Dallas) 9:230-236, 1989.

    Google Scholar 

  14. Marcus, B. C., C. W. Wyble, K. L. Hynes, and B. L. Gewertz. Cytokine-induced increases in endothelial permeability occur after adhesion molecule expression. Surgery (St. Louis) 120:411-417, 1996.

    Google Scholar 

  15. Milton, S. G., and V. P. Knutson. Comparison of the function of the tight junctions of endothelial cells and epithelial cells in regulating the movement of electrolytes and macromolecules across the cell monolayer. J. Cell Physiol. 144:498-504, 1990.

    Google Scholar 

  16. Noria, S., D. B. Cowan, A. I. Gotlieb, and B. L. Langille. Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ. Res. 85:504-514, 1999.

    Google Scholar 

  17. Phillips, C. G., K. H. Parker, and W. Wang. A model for flow through discontinuities in the tight junction of the endothelial intercellular cleft. Bull. Math. Biol. 56:723-741, 1994.

    Google Scholar 

  18. Qiu, Y., and J. M. Tarbell. Numerical simulation of oxygen mass transfer in a compliant curved tube model of a coronary artery. Ann. Biomed. Eng. 28:26-38, 2000.

    Google Scholar 

  19. Saito, Y. A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev. Polarography 15:177-187, 1968.

    Google Scholar 

  20. Secomb, T. W., R. Hsu, and A. R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. Heart Circ. Physiol. 274:H1016-H1022, 1998.

    Google Scholar 

  21. Sill, H., Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis, and J. M. Tarbell. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. Heart Circ. Physiol. 268:H535-H543, 1995.

    Google Scholar 

  22. Staddon, J. M., K. Herrenknecht, C. Smales, and L. L. Rubin. Evidence that tyrosine phosphorylation may increase tight junction permeability. J. Cell. Sci. 108:609-619, 1995.

    Google Scholar 

  23. Tarbell, J. M., and Y. Qiu. Arterial wall mass transport: The possible role of blood phase resistance in the localization of arterial disease. In: The Biomedical Engineering Handbook, 2nd ed., edited by J. D. Bronzino. New York: CRC, 2000, pp. 100.1-100.15.

    Google Scholar 

  24. Tedgui, A., and M. J. Lever. Filtration through damaged and undamaged rabbit thoracic aorta. Am. J. Physiol. Heart Circ. Physiol. 247:H784-H791, 1984.

    Google Scholar 

  25. Truskey, G. A., W. L. Roberts, R. A. Herrmann, and R. A. Malinauskas. Measurement of endothelial permeability to 125I-low density lipoproteins in rabbit arteries by use if en face preparations. Circ. Res. 71:883-897, 1992.

    Google Scholar 

  26. Vink, H., and B. R. Duling. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581-589, 1996.

    Google Scholar 

  27. Vink, H., and B. R. Duling. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am. J. Physiol. Heart Circ. Physiol. 278:H285-H289, 2000.

    Google Scholar 

  28. Wada, S., and T. Karino. Theoretical study on flow-dependent concentration polarization of low density lipoproteins at the luminal surface of a straight artery. Biorheology 36:207-223, 1999.

    Google Scholar 

  29. Weinbaum, S., G. Tzeghai, P. Ganatos, R. Pfeffer, and S. Chien. Effects of cell turnover and leaky junctions on arterial macromolecular transport. Am. J. Physiol. Heart Circ. Physiol. 248:H945-H960, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgson, L., Tarbell, J.M. Solute Transport to the Endothelial Intercellular Cleft: The Effect of Wall Shear Stress. Annals of Biomedical Engineering 30, 936–945 (2002). https://doi.org/10.1114/1.1507846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1507846

Navigation