Skip to main content

Advertisement

Log in

A Broadband Viscoelastic Spectroscopic Study of Bovine Bone: Implications for Fluid Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To explore the hypothesis that mechanical excitation-induced fluid flow and/or fluid pressure are potential mechanical transduction mechanisms in bone adaptation, a complementary experimental and analytical modeling effort has been undertaken. Experimentally, viscoelastic tanδ properties of saturated cortical bovine bone were measured in both torsion and bending, and significant tan δ values in the 100-105Hz range were observed, although the nature of the damping is not consistent with a fluid pressure hypothesis. Analytically, micromechanically based poroelasticity models were exercised to quantify energy dissipation associated with load-induced fluid flow in large scale channels. The modeling results indicate that significant damping due to fluid flow occurs only above 1 MHz frequencies. Together, the experimental and analytical results indicate that at excitation frequencies presumed to be physiological (1–100 Hz), mechanical loading of bone generates extremely small pore fluid pressures, making the hypothesized fluid-pressure transduction mechanism upon osteocytes untenable. © 2001 Biomedical Engineering Society.

PAC01: 8380Lz, 8710+e, 8385Cg

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bassett, C. A. L., and R. O. Becker. Generation of electric potentials in bone in response to mechanical stress. Science137:1063–1064, 1962.

    Google Scholar 

  2. Biot, M. A.General theory of three-dimensional consolidation. J. Appl. Phys.12:155–164, 1941.

    Google Scholar 

  3. Cowin, S. C.Bone stress adaptation models. J. Biomech. Eng.115:528–533, 1993.

    Google Scholar 

  4. Cowin, S. C.Bone poroelasticity. J. Biomech.323:217–38, 1999.

    Google Scholar 

  5. Cowin, S. C., and D. H. Hegedus. Bone remodeling. I. Theory of adaptive elasticity. J. Elast.6:331–326, 1976.

    Google Scholar 

  6. Currey, J. The Mechanical Adaptations of Bones, Princeton: Princeton University Press, 1984

    Google Scholar 

  7. Frost, J. Mathematical Elements of Lamellar Bone Remodelling, Springfield, IL: Charles C. Thomas, 1964.

    Google Scholar 

  8. Fukada, E., and I. Yasuda. On the piezoelectric effect of bone. J. Phys. Soc. Jpn.10:1158–1169, 1957.

    Google Scholar 

  9. Garner, E. B., R. S. Lakes, T. Lee, C. Swan, and R. A. Brand. Viscoelastic dissipation in compact bone: Implications for stress-induced fluid flow in bone. J. Biomech. Eng.122:166–172, 2000.

    Google Scholar 

  10. Goodship, A. E., L. E. Lanyon, and H. McFie. Functional adaptation of bone to increased stress. J. Bone Jt. Surg.61–A, 4:539–546, 1979.

    Google Scholar 

  11. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech.31:969–976, 1998.

    Google Scholar 

  12. Jendrucko, R. J., W. A. Hyman, P. H. Newell, and B. K. Chakrabarty. Theoretical evidence for the generation of high pressure in bone cells. J. Biomech.9:87–91, 1976.

    Google Scholar 

  13. Johnson, M. W., D. A. Chakkalakal, R. A. Harper, J. L. Katz, and S. W. Rouhana. Fluid flow in bone in vitro. J. Biomech.15:881–885, 1982.

    Google Scholar 

  14. Lakes, R. S., and J. L. Katz. Viscoelastic properties of wet cortical bone. II. Relaxation mechanisms. J. Biomech.12:679–687, 1979.

    Google Scholar 

  15. Lakes, R. S., and S. Saha. Cement line motion in bone. Science204:501–503, 1979.

    Google Scholar 

  16. Lakes, R. S., H. S. Yoon, and J. L. Katz. Ultrasonic wave propagation and attenuation in wet bone. J. Biomed. Eng.8:143–148, 1986.

    Google Scholar 

  17. Lakes, R. S., and J. Quackenbush. Viscoelastic behavior in indium tin alloys over a wide range of frequency and time. Philos. Mag. Lett.74:227–238, 1996.

    Google Scholar 

  18. Lakes, R. S., Viscoelastic Properties of Cortical Bone. In Bone Mechanics Handbook, 2nd ed., edited by S. C. Cowin. Boca Raton, FL: CRC Press, 2000.

    Google Scholar 

  19. Lanyon, L. E.Functional strain as a determinant for bone remodeling. Calcif. Tissue Int.36:S56–S61, 1984.

    Google Scholar 

  20. Levy, C., M. Perl, and K. R. Gordon. Geometrical, mechanical, and structural adaptation of mouse femora exposed to different loadings. J. Eng. Mech.124:217–222, 1998.

    Google Scholar 

  21. Lugassy, A. A., and E. Korostoff. Viscoelastic behavior of bovine femoral cortical bone and sperm whale dentin. In Research in Dental and Medical Materials, New York: Plenum, 1969.

    Google Scholar 

  22. Otter, T., and E. D. Salman. Hydrostatic pressure reversibly blocks membrane control of ciliary motion in paramecium. Science206:358–361, 1979.

    Google Scholar 

  23. Piekarski, K., and M. Munro. Transport mechanism operating between blood supply and osteocytes in long bones. Nature (London)269:80–82, 1977.

    Google Scholar 

  24. Pollack, S. R., N. Petrov, R. Salzstein, G. Brankov, and R. Blagoeva. An anatomical model for streaming potentials in osteons. J. Biomech.17:627–636, 1984.

    Google Scholar 

  25. Roelofsen, J., J. Klein-Nulend, and E. H. Burger. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech.28:1493–1503, 1995.

    Google Scholar 

  26. Rouhana, S. W., M. W. Johnson, D. A. Chakkalakal, R. A. Harper, and J. L. Katz. Permeability of compact bone Joint ASME-ASCE Conference of the Biomechanics Symposium. AMD (Am. Soc. Mech. Eng.)43:169–172, 1981.

    Google Scholar 

  27. Rubin, C. T., and L. E. Lanyon. Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int.37:411–417, 1985.

    Google Scholar 

  28. Sasaki, N., Y. Nakayama, M. Yoshikawa, and A. Enyo. Stress relaxation function of bone and bone collagen. J. Biomech.26:1369–1376, 1993.

    Google Scholar 

  29. Scheidegger, A. E. The Physics of Flow through Porous Media. New York: Macmillan, 1957.

    Google Scholar 

  30. Swan, C. C.Techniques for stress and strain controlled homogenization of inelastic periodic composites. Comput. Methods Appl. Mech. Eng.117:249–267, 1994.

    Google Scholar 

  31. Wolff, J. Das Gesetz der Transformation der Knochen. Berlin: A. Hirschwald, 1892.

    Google Scholar 

  32. Zhang, D., S. Weinbaum, and S. C. Cowin. Estimates of the peak pressures in bone pore water. J. Biomech. Eng.120:697–703, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buechner, P.M., Lakes, R.S., Swan, C. et al. A Broadband Viscoelastic Spectroscopic Study of Bovine Bone: Implications for Fluid Flow. Annals of Biomedical Engineering 29, 719–728 (2001). https://doi.org/10.1114/1.1385813

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1385813

Navigation