Skip to main content
Log in

Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The structure-function relationships for the permeability of trabecular bone may have relevance for tissue engineering, total joint replacements, and whole bone mechanics. To investigate such relationships, we used a constant flow rate permeameter to determine the intrinsic permeability of trabecular bone specimens, oriented longitudinally or transversely to the principal trabecular orientation, from the human vertebral body (n=20), human proximal femur (n=12), and bovine proximal tibia (n=24). Overall, the intertrabecular permeability ranged from 2.68 × 1011 to 2.00 × 108 m2. Significant negative nonlinear relations between intertrabecular permeability and volume fraction were found for each group except the longitudinal bovine proximal tibial specimens (r2=0.34-0.80). The average permeability ratio, a measure of the anisotropy, was 2.05, 6.60, and 23.3 for the human vertebral body, bovine tibia, and human femur, respectively. The permeability depended strongly on flow direction relative to the principal trabecular orientation (p < 0.0001) and anatomic site (p < 0.0001). In addition to providing a comprehensive description of intertrabecular permeability as a function of anatomic site and flow direction, these data provide substantial insight into the underlying structure-function relationships. © 1999 Biomedical Engineering Society.

PAC99: 8719-j

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ashman, R. B. Experimental techniques. In: Bone Mechanics. edited by S. C. Cowin. Boca Raton, FL: CRC Press, 1989, pp. 75–95.

    Google Scholar 

  2. Bear, J. Dynamics of Fluids in Porous Media. New York: Dover, 1972.

    Google Scholar 

  3. Beaudoin, A. J., W. M. Mihalko, and W. R. Krause. Finite element modelling of polymethylmethacrylate flow through cancellous bone. J. Biomech. 24:127–136, 1991.

    Google Scholar 

  4. Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. 203:71–75, 1989.

    Google Scholar 

  5. Darcy, H. Les Fontaines Publiques de la Ville de Dijon. 1856.

  6. Ford, C. M., and T. M. Keaveny. The dependence of shear failure properties of bovine tibial trabecular bone on apparent density and trabecular orientation. J. Biomech, 29:1309–1317, 1996

    Google Scholar 

  7. Galante, J., W. Rostoker, and R. D. Ray. Physical properties of trabecular bone. Calcif. Tissue Res. 5:236–246, 1970.

    Google Scholar 

  8. Goulet, R. W., S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27:375–389, 1994.

    Google Scholar 

  9. Greenkorn, R. A., C. R. Johnson, and L. K. Shallenberger. Directional permeability of heterogeneous anisotropic porous media. Soc. Pet. Engineers J. 231:124, 1964.

    Google Scholar 

  10. Grimm, M. J., and J. L. Williams. Measurements of permeability in human calcaneal trabecular bone. J. Biomech. 30:743–745, 1997.

    Google Scholar 

  11. Hui, P. W., P. C. Leung, and A. Sher. Fluid conductance of cancellous bone graft as a predictor for graft-host interface healing. J. Biomech. 29:123–132, 1996.

    Google Scholar 

  12. Iberall, A. S. Permeability of glass wool and other highly porous media. J. Res. Natl. Bur. Stand. 45:398–406, 1950.

    Google Scholar 

  13. Johnson, M. W. Behavior of fluid in stressed bone and cellular stimulation. Calcif. Tissue Int. 36:S72-S76, 1984.

    Google Scholar 

  14. Keaveny, T. M., X. E. Guo, E. F. Wachtel, T. A. McMahon, and W. C. Hayes. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech. 27:1127–1136, 1994.

    Google Scholar 

  15. Keaveny, T. M., E. F. Wachtel, S. P. Zadesky, and Y. P. Arramon. Application of the Tsai-Wu quadratic multiaxial failure criterion to bovine trabecular bone. J. Biomech. Eng. 121:99–107, 1999.

    Google Scholar 

  16. Li, G., J. T. Bronk, K. N. An, and P. J. Kelly. Permeability of cortical bone of canine tibiae. Microvasc. Res. 34:302–310, 1987.

    Google Scholar 

  17. Lim, T. H., and J. H. Hong. Poroelastic properties of vertebral trabecular bone. Adv. Bioeng. 33:127–128, 1996.

    Google Scholar 

  18. Mosekilde, L., L. Mosekilde, and C. C. Danielsen. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone (N.Y.) 8:79–85, 1987.

    Google Scholar 

  19. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Google Scholar 

  20. Ochoa, J. A., D. A. Heck, K. D. Brandt, and B. M. Hillberry. The effect of intertrabecular fluid on femoral head mechanics. J. Rheumatol. 18:580–584, 1991.

    Google Scholar 

  21. Ochoa, J. A., and B. M. Hillberry. Permeability of bovine cancellous bone. Transactions of the Orthopedic Research Society 38:162, 1992.

    Google Scholar 

  22. Ochoa, J. A., A. P. Sanders, D. A. Heck, and B. M. Hillberry. Stiffening of the femoral head due to intertrabecular fluid and intraosseous pressure. J. Biomech. Eng. 113:259–262, 1991.

    Google Scholar 

  23. Ochoa, J. A., A. P. Sanders, T. W. Kiesler, D. A. Heck, J. P. Toombs, K. D. Brandt, and B. M. Hillberry. In vivo observations of hydraulic stiffening in the canine femoral head. J. Biomech. Eng. 119:103–108, 1997.

    Google Scholar 

  24. Sadler, L. Y., M. B. Rahnama, and G. P. Whittle. Laboratory measurement of the permeability of Selma chalk using an improved experimental technique. Hazard. Waste Hazard. Mater. 9:331–343, 1992.

    Google Scholar 

  25. Scheidegger, A. E. The Physics of Flow through Porous Media. New York: MacMillan, 1957.

    Google Scholar 

  26. Sharp, D. J., K. E. Tanner, and W. Bonfield. Measurement of the density of trabecular bone. J. Biomech. 23:853–857, 1990.

    Google Scholar 

  27. Whitaker, S. Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61:14–28, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauman, E.A., Fong, K.E. & Keaveny, T.M. Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site. Annals of Biomedical Engineering 27, 517–524 (1999). https://doi.org/10.1114/1.195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.195

Navigation