Skip to main content
Log in

Role of the Pyk2–MAP Kinase–cPLA2 Signaling Pathway in Shear-Dependent Platelet Aggregation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanisms of shear-induced platelet aggregation are not established. Data that ristocetin-induced von Willebrand factor (VWF) binding to glycoprotein (Gp) Ibα activates proline-rich tyrosine kinase 2 (Pyk2) and extracellular-regulated kinase (ERK) has led to speculation that these events are coupled and that a MAP kinase may activate cytosolic phospholipase A2 (cPLA2)-mediated arachidonic acid (AA) release. To test this hypothesis and clarify the role of AA metabolism in shear-induced VWF-dependent platelet aggregation, we examined Pyk2, ERK1/2, and p38 phosphorylation, and arachidonic acid release and metabolism in platelets subjected to pathological shear stress in vitro. We observe tyrosine phosphorylation of Pyk2, p38, and ERK1/2 but no measurable increase in free AA, 12-hydroxyeicosatetraenoic acid, or thromboxane A2. Inhibitors of ERK, p38, or cyclooxygenase activation fail to affect shear-induced platelet aggregation. When washed platelets are aspirin-pretreated, arachidonic acid release becomes measurable and aggregation at 60 and 120 s is attenuated. These data indicate that shear-induced VWF binding to platelet GpIb-IX-V activates Pyk2, ERK1/2, p38, and cPLA2, but that the magnitude of these responses is below the threshold needed to enhance shear-induced VWF-dependent platelet aggregation in the presence of plasma. These results provide a mechanistic basis for the long-standing observation that shear-dependent platelet aggregation is unaffected by the antiplatelet drug aspirin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Asazuma, N., Y. Ozaki, K. Satoh, Y. Yatomi, M. Handa, Y. Fujimura, S. Miura, and S. Kume. Glycoprotein Ib-von Willebrand factor interactions activate tyrosine kinases in human platelets. Blood90:4789–4798, 1997.

    Google Scholar 

  2. Börsch-Haubold, A. G., F.Ghomashchi, S. Pasquet, M. Goedert, P. Cohen, M. H. Gelb, and S. P. Watson. Phosphorylation of cytosolic phospholipase A2 in platelets is mediated by multiple stress-activated protein kinase pathways. Eur. J. Biochem.265:195–203, 1999.

    Google Scholar 

  3. Canobbio, I., P. Lova, E. Hirsch, F. Siniaglia, C. Balduini, and M. Torti. Proline-rich tyrosine kinase 2 and focal adhesion kinase are involved in different phases of platelet activation by VWF. Thromb. Haemost.87:509–517, 2002.

    Google Scholar 

  4. Coller, B. S. Anti-GPIIb/IIIa drugs: Current strategies and future directions. Thromb. Haemost.86:427–443, 2001.

    Google Scholar 

  5. Davies, S. P., H. Reddy, M. Caivano, and P. Cohen. Specificity andmechanism of action of some commonly used protein kinase inhibitors. Biochem. J.351:95–105, 2000.

    Google Scholar 

  6. Feng, S., J.C. Reséndiz, N. Christodoulides, X. Lu, D. Arboleda, M. C. Berndt, and M. H. Kroll. Pathological shear stress stimulates the tyrosine phosphorylation of a-actinin associated with the glycoprotein Ib-IX complex. Biochemistry41:1100–1108, 2002.

    Google Scholar 

  7. Feng, S., J. C Reséndiz, X. Lu, and M. H. Kroll. Filamin A binding to the cytoplasmic tail of glycoprotein Ibaregulates von Willebrand factor-induced platelet activation. Blood102:2122–2129, 2003.

    Google Scholar 

  8. Huang, P.Y., and J. D. Hellums.Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation. Biophys. J.65:344–353, 1993.

    Google Scholar 

  9. Jackson, S. P., and S. M. Schoenwaelder. Anti-platelet therapy-in search of the magic bullet. Nat. Rev. Drug Discov.2:775–789, 2003.

    Google Scholar 

  10. Kato, K., T. Kanaji, S. Russell, T. J. Kunicki, K. Furihata, S. Kanaji, S. P. Marchese, A. Reininger, Z. M. Ruggeri, and J. Ware. The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood102:1701–1707, 2003.

    Google Scholar 

  11. Kroll, M. H., T. S. Harris, J. L Moake, R. I. Handin, and A. I. Schafer. von Willebrand factor binding to platelet glycoprotein Ib initiates signals for platelet activation. J. Clin. Invest.88:1568–1573, 1991.

    Google Scholar 

  12. Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, and J. L. Moake. Platelets and shear stress. Blood88:1525–1541, 1996.

    Google Scholar 

  13. Li, Z., X. Xi, and X. Du. A mitogen-activated protein kinasedependent signaling pathway in the activation of platelet integrin aIIbβ3. J. Biol. Chem.276:42226–42232, 2002.

    Google Scholar 

  14. Lin, L.-L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth, and R. J. Davis. cPLA2 is phosphorylated and activated by MAP kinase. Cell72:269–278, 1993.

    Google Scholar 

  15. Maclouf, J., H. Kindahl, E. Granstrom, and B. Samuelsson. Interactions of prostaglandin H2 and thromboxane A2 with human serum albumin. Eur. J. Biochem.109:561–566, 1980.

    Google Scholar 

  16. Mazzucato, M., L. De Marco, P. Pradella, A. Masotti, and F. I. Pareti. Porcine von Willebrand factor binding to human platelet GpIb induces transmembranous calcium influx. Thromb. Haemost.75:655–660, 1996.

    Google Scholar 

  17. Mazzucato, M., P. Pradella, M. R. Cozzi, L.DeMarco, and Z. M. Ruggeri. Sequential cytoplasmic signals in a 2-stage platelet activation process induced by the glycoprotein Ibamechanoreceptor. Blood100:2793–2800, 2002.

    Google Scholar 

  18. McNichol,A., and E.C.G. Jackson. Inhibition of the MEK/ERK pathway has no effect on agonist-induced aggregation of human platelets. Biochem. Pharm.65:1243–1250, 2003.

    Google Scholar 

  19. Moake, J. L., N. A. Turner, N. A. Stathopoulos, L. H. Nolasco, and J. D. Hellums. Shear-induced platelet aggregation can be mediated by VWF released from platelets, as well as exogenous large or unusually large VWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood71:1366–1374, 1988.

    Google Scholar 

  20. Murasawa, S., Y. Mor, Y. Nozawa, H. Masaki, K. Maruyama, Y. Tsutsumi, Y.Moriguchi, Y. Shibasaki, Y. Tanaka, T. Iwasaka, M. Inada, and H. Matsubara. Role of calcium-sensitive tyrosine Why Shear-Induced Platelet Aggregation Is Aspirin-Insensitive 1201 kinase Pyk2/CAKβ/RAFTK in angiotensin II-induced Ras/ERK signaling. Hypertension32:668–675, 1998

    Google Scholar 

  21. Navdaev, A., and K. J. Clemetson. Glycoprotein Ib crosslinking/ ligation on echicetin coated surfaces or echicetin-IgM?in stirred suspension activates platelets cytoskeleton modulated calcium release. J. Biol. Chem.277:45928–45934, 2002.

    Google Scholar 

  22. Ohmori, T., Y. Yatomi, N. Asazuma, K. Satoh, and Y. Ozaki. Involvement of proline-rich tyrosine kinase 2 in platelet activation: Tyrosine phosphorylation is mostly dependent on aIIbβ3 integrin and protein kinase C, translocation to the cytoskeleton and association with Shc through Grb2. Biochem. J.347:561–569, 2000.

    Google Scholar 

  23. Ozaki, Y., K. Satoh, Y. Yatomi, S. Miura, Y. Fujimura, and S. Kume. Protein tyrosine phosphorylation in human platelets induced by interaction between glycoprotein Ib and von Willebrand factor. Biochim. Biophys. Acta1243:482–488, 1995.

    Google Scholar 

  24. Pandey, P., S. Avraham, S. Kumar, A. Nakazawa, A. Place, L. Ghanem, A. Rana, V. Kumar, P. K. Majumder, H. Avraham, R. J. Davis, and S. Kharbanda. Activation of p38 mitogen-activated protein kinase by PYK2/related adhesion focal tyrosine kinasedependent mechanism. J. Biol. Chem.274:10140–10144, 1999.

    Google Scholar 

  25. Raja, S., S. Avraham, and H. Avraham. Tyrosine phosphorylation of the novel protein-tyrosine kinase RAFTK during an early phase of platelet activation by an integrin glycoprotein IIb-IIIa independent mechanism. J. Biol. Chem.272:10941–10947, 1997.

    Google Scholar 

  26. Rajagopalan, S., L. V. McIntire, E. R. Hall, and K. K. Wu. The stimulation of arachidonic acid metabolism in human platelets by hydrodynamic stresses. Biochim. Biophys. Acta958:108–115, 1988.

    Google Scholar 

  27. Reséndiz, J. C., S. Feng, G. Ji, K. A. Francis, M. C. Berndt, and M. H. Kroll. Purinergic P2Y12 receptor blockade inhibits shear-induced platelet phosphatidylinositol 3-kinase activation. Mol. Pharmacol.63:639–645, 2003.

    Google Scholar 

  28. Ruggeri, Z.M. Platelets in atherothrombosis. Nat. Med. 8:1227–1234, 2002.

    Google Scholar 

  29. Sadler, J. E. Contact-how platelets touch von Willebrand factor. Science297:1128–1129, 2002.

    Google Scholar 

  30. Savage, B., F. Almus-Jacobs, and Z. M. Ruggeri. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell94:657–666, 1998.

    Google Scholar 

  31. Shattil, S. J. Signalling through platelet integrin aIIbβ3: Insideout, outside-in, and sideways. Thromb. Haemost.82:318–325, 1999.

    Google Scholar 

  32. Song, S., J. Freedman, M. Mody, and A. H. Lazarus. p38 MAPK is activated but not necessary in porcine von Willebrand factordependent platelet activation. Br. J. Haematol.107:532–538, 1999.

    Google Scholar 

  33. Wang, Z., T. M. Leisner, and L.V. Parise. Platelet a2β1 integrin activation: Contribution of ligand internalization and the a2-cytoplasmic domain. Blood102:1307–1315, 2003.

    Google Scholar 

  34. Williams, S. B., L. P. McKeown, and H. R. Gralnick. Asialo von Willebrand factor binding to and aggregation of platelets: Effects of inhibitors of platelet metabolism and function. J. Lab. Clin. Med.109:560–565, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Kroll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Feng, S., Reséndiz, J.C. et al. Role of the Pyk2–MAP Kinase–cPLA2 Signaling Pathway in Shear-Dependent Platelet Aggregation. Annals of Biomedical Engineering 32, 1193–1201 (2004). https://doi.org/10.1114/B:ABME.0000039353.97347.28

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000039353.97347.28

Navigation