Skip to main content
Log in

Mechanistic Model of Myocardial Energy Metabolism Under Normal and Ischemic Conditions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A moderate reduction in coronary blood flow results in decreased myocardial oxygen consumption, accelerated glycolysis, decreased pyruvate oxidation, and lactate accumulation. To quantitatively understand cardiac metabolism during ischemia, we have developed a mechanistic, mathematical model based on biochemical mass balances and reaction kinetics in cardiac cells. By numerical solution of model equations, computer simulations showed the dynamic responses in glucose, fatty acid, glucose-6-phosphate, glycogen, triglyceride, pyruvate, lactate, acetyl-CoA, and free-CoA as well as CO2, O2 phosphocreatine/creatine, nicotinamide adenine dinucleotide (reduced form)/nicotinamide adenine dinucleotide (oxidized form) NADH/NAD+, and adenosine diphosphate/adenosine triphosphate (ADP/ATP). When myocardial ischemia was simulated by a 60% reduction in coronary blood flow, the model generated myocardial concentrations, uptakes, and fluxes that were consistent with experimental data from in vivopig studies. After 60 min of ischemia the concentrations of glycogen, phosphocreatine, and ATP were decreased by 60%, 75%, and 50%, respectively. With the onset of ischemia, myocardial lactate concentration increased and the myocardium switched from net consumer to net producer of lactate. Our model predicted a rapid 13-fold increase in NADH/NAD but only a twofold increase in the ratio of acetyl-CoA to free-CoA. These findings are consistent with the concept that pyruvate oxidation is inhibited during ischemia partially by the rise in NADH/NAD+. © 2002 Biomedical Engineering Society.

PAC2002: 8717Aa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Achs, M. J., and D. Garfinkel. Computer simulation of energy metabolism in anoxic perfused rat heart. Am. J. Physiol. 232:R164–R174, 1977.

    Google Scholar 

  2. Arai, A. E., G. A. Pantely, C. G. Anselone, J. Bristow, and J. D. Bristow. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ. Res. 69:1458–1469, 1991.

    Google Scholar 

  3. Bell, G., T. Kayano, J. B. Buse, C. F. Burant, J. Takeda, D. Lin, H. Fukumoto, and S. Seino. Molecular biology of mammalian glucose transporters. Diabetes Care 13:198–208, 1990.

    Google Scholar 

  4. Cabrera, M. E., G. M. Saidel, and S. C. Kalhan. Lactate metabolism during exercise: Analysis by an integrative systems model. Am. J. Physiol. 277:R1522–R1536, 1999.

    Google Scholar 

  5. Cabrera, M. E., G. M. Saidel, and S. C. Kalhan. Role of O2 in regulation of lactate dynamics during hypoxia: Mathematical model and analysis. Ann. Biomed. Eng. 26:1–27, 1998.

    Google Scholar 

  6. Ch'en, F. F.–T., R. D. Vaughan–Jones, K. Clarke, and D. Noble. Modeling myocardial ischaemia and reperfusion. Prog. Biophys. Mol. Biol. 69:515–538, 1998.

    Google Scholar 

  7. Comte, B., G. Vincent, B. Bouchard, M. Jette, S. Cordeau, and C. Des Rosiers. A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts. J. Biol. Chem. 272:26125–26131, 1997.

    Google Scholar 

  8. Gertz, E., J. Wisneski, R. Neese, J. Bristow, G. Searle, and J. Hanlon. Myocardial lactate metabolism: Evidence of lactate release during net chemical extraction in man. Circulation 63:1273–1279, 1981.

    Google Scholar 

  9. Gertz, E. W., J. A. Wisneski, W. C. Stanley, and R. A. Neese. Myocardial substrate utilization during exercise in humans. J. Clin. Invest. 82:2017–2025, 1988.

    Google Scholar 

  10. Hacker, T., J. Hall, C. Stone, and W. C. Stanley. Alanine, glutamate, and ammonia exchanges in acutely ischemic swine myocardium. Basic Res. Cardiol. 87:184–192, 1992.

    Google Scholar 

  11. Hall, J. L., G. D. Lopaschuk, A. Barr, J. Bringas, R. D. Pizzurro, and W. C. Stanley. Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels. Cardiovasc. Res. 32:879–885, 1996.

    Google Scholar 

  12. Hall, J. L., W. C. Stanley, G. D. Lopaschuk, J. A. Wisneski, R. D. Pizzurro, C. D. Hamilton, and J. G. McCormack. Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine–induced work. Am. J. Physiol. 271:H2320–H2329, 1996.

    Google Scholar 

  13. Hansford, R., and L. Cohen. Relative importance of pyruvate dehydrogenase interconversion and feed–back inhibition in the effect of fatty acids on pyruvate oxidation by rat heart mitochondria. Arch. Biochem. Biophys. 191:65–81, 1978.

    Google Scholar 

  14. Herman, R. H., R. M. Cohn, and P. D. McNamara. Principles of Metabolic Control in Mammalian Systems. New York: Plenum Press, 1980, p. 669.

    Google Scholar 

  15. Jafri, M. S., S. J. Dudycha, and B. O'Rourke. Cardiac energy metabolism: Models of cellular respiration. Annu. Rev. Biomed. Eng. 3:57–81, 2001.

    Google Scholar 

  16. James, D. E., M. Strube, and M. Mueckler. Molecular cloning and characterization of an insulin–regulatable glucose transporter. Nature (London) 338:83–87, 1989.

    Google Scholar 

  17. Joshi, A., and B. O. Palsson. Metabolic dynamics in the human red cell. Part I A comprehensive kinetic model; Part II Interactions with the environment. J. Theor. Biol. 141:515–528, 1989.

    Google Scholar 

  18. Joshi, A., and B. O. Palsson. Metabolic dynamics in the human red cell. Part III Metabolic reaction rates; Part IV Data prediction and some model computations. J. Theor. Biol. 142:41–85, 1990.

    Google Scholar 

  19. Kashiwaya, Y., K. Sato, N. Tsuchiya, S. Thomas, D. A. Fells, R. L. Veech, and J. V. Passonneau. Control of glucose utilization in working perfused rat heart. J. Biol. Chem. 269:25502–25514, 1994.

    Google Scholar 

  20. Katz, A., A. Edlund, and K. Sahlin. NADH content and lactate production in the perfused rabbit heart. Acta Physiol. Scand. 130:193–200, 1987.

    Google Scholar 

  21. Lasley, R. D., Z. Zhou, J. O. Hegge, R. Bunger, and R. M. Mentzer, Jr. Adenosine attenuates in vivo myocardial stunning with minimal effects on cardiac energetics. Basic Res. Cardiol. 93:303–312, 1998.

    Google Scholar 

  22. Liedtke, A. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog. Cardiovasc. Dis. 23:321–326, 1981.

    Google Scholar 

  23. Lopaschuk, G. D., D. D. Belke, J. Gamble, T. Itoi, and B. O. Schonekess. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim. Biophys. Acta 1213:263–276, 1994.

    Google Scholar 

  24. McNulty, P. H., A. J. Sinusas, C. Q.–X. Shi, D. Dione, L. H. Young, G. C. Cline, and G. I. Shulman. Glucose metabolism distal to a critical coronary stenosis in a canine model of low–flow myocardial ischemia. J. Clin. Invest. 98:62–69, 1996.

    Google Scholar 

  25. Neely, J., and L. Grotyohann. Role of glycolytic products in damage to ischemic myocardium. Circ. Res. 55:816–824, 1984.

    Google Scholar 

  26. Opie, L. H. The Heart: Physiology and Metabolism. New York: Raven, 1991.

    Google Scholar 

  27. Panchal, A. R., B. Compte, H. Huang, T. Kerwin, A. Darvish, C. Des Rosiers, H. Brunengraber, and W. C. Stanley. Partitioning of pyruvate between oxidation and anaplerosis in swine heart. Am. J. Physiol. 279:H2390–H2398, 2000.

    Google Scholar 

  28. Pantely, G. A., S. A. Malone, W. S. Rhen, C. G. Anselone, A. E. Arai, J. Bristow, and J. D. Bristow. Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ. Res. 67:1481–1493, 1990.

    Google Scholar 

  29. Stanley, W. C. Cardiac energetics during ischaemia and the rationale for metabolic interventions. Coron. Artery Dis. 12:S3–S7, 2001.

    Google Scholar 

  30. Stanley, W. C. In vivo models of myocardial metabolism during ischemia: Application to drug discovery and evaluation. J. Pharmacol. Toxicol. Methods 43:133–140, 2000.

    Google Scholar 

  31. Stanley, W. C., J. L. Hall, K. R. Smith, G. D. Cartee, T. A. Hacker, and J. A. Wisneski. Myocardial glucose transporters and glycolytic metabolism during ischemia in hyperglycemic diabetic swine. Metabolism 43:61–69, 1994.

    Google Scholar 

  32. Stanley, W. C., J. L. Hall, C. K. Stone, and T. A. Hacker. Acute myocardial ischemia causes a transmural gradient in glucose extraction but not glucose uptake. Am. J. Physiol. 262:H91–H96, 1992.

    Google Scholar 

  33. Stanley, W. C., L. A. Hernandez, D. Spires, J. Bringas, S. Wallace, and J. G. McCormack. Pyruvate dehydrogenase activity and malonyl CoA levels in normal and ischemic swine myocardium: Effects of dichloroacetate. J. Mol. Cell. Cardiol. 28:905–914, 1996.

    Google Scholar 

  34. Stanley, W. C., G. D. Lopaschuk, J. L. Hall, and J. G. Mc–Cormack. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions: Potential for pharmacological interventions. Cardiovasc. Res. 33:243–257, 1997.

    Google Scholar 

  35. Sumi, T., and M. Ui. Allosteric properties of enzymes with “ping–pong” mechanism. Biochim. Biophys. Acta 276:12–18, 1972.

    Google Scholar 

  36. Taegtmeyer, H. Energy metabolism of the heart: From basic concepts to clinical applications. Curr. Probl. Cardiol. 19:62–113, 1994.

    Google Scholar 

  37. van der Vusse, G., M. van Bilsen, and J. Glatz. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc. Res. 45:279–293, 2000.

    Google Scholar 

  38. Williamson, J. R., and B. E. Corkey. Assay of citric acid cycle intermediates and related compounds—Update with tissue metabolite levels and intracellular distribution. In: Biomembranes, Part F: Bioenergetics—Oxidative Phosphorylation, edited by S. Fleischer and L. Packer. New York: Academic, 1979, pp. 200–222.

    Google Scholar 

  39. Wisneski, J. A., E. W. Gertz, R. A. Neese, L. D. Gruenke, D. L. Morris, and J. C. Craig. Metabolic fate of extracted glucose in normal human myocardium. J. Clin. Invest. 76:1819–1827, 1985.

    Google Scholar 

  40. Wisneski, J. A., E. W. Gertz, R. A. Neese, and M. Mayr. Myocardial metabolism of free fatty acids: Studies with 14C–labeled substrates in humans. J. Clin. Invest. 79:359–366, 1987.

    Google Scholar 

  41. Wisneski, J. A., W. C. Stanley, R. A. Neese, and E. W. Gertz. Effects of acute hyperglycemia on myocardial glycolytic activity in humans. J. Clin. Invest. 85:1648–1656, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salem, J.E., Saidel, G.M., Stanley, W.C. et al. Mechanistic Model of Myocardial Energy Metabolism Under Normal and Ischemic Conditions. Annals of Biomedical Engineering 30, 202–216 (2002). https://doi.org/10.1114/1.1454133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1454133

Navigation