Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66(1), 195-201 | DOI: 10.11118/actaun201866010195

Effect of Vermicompost and Selected Plant Preparations on the Development of Arbuscular Mycorrhizal Symbiosis in Lettuce (Lactuca sativa)

Michaela Stroblová, Ladislava Prokopová, Jaroslav Záhora
Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

The aim of the pot experiment was to evaluate effect of vermicompost and promoting plant preparations application (Symbivit and Plantaktiv) on the development of arbuscular mycorrhizal symbiosis in lettuce, amount of extraradical mycelium of mycorrhizal fungi in soil and plant biomass production. Symbivit contains six species of mycorrhizal fungi and Plantaktiv contains magnesium sulfate activated by oxygen promoting activity of aerobic microorganisms in the soil. The application of vermicompost and promoting plant preparations did not have a statistically significant effect on lettuce root colonization by mycorrhizal fungi. The greatest length of extraradical mycelium was observed in variant with vermicompost application, in variant with addition of vermicompost and Symbivit, and in variant with vermicompost applied with both plant preparations. There was detected statistically significant difference when compared to control variant. Dry matter weight of aboveground biomass and root of the lettuce were statistically significantly increased in all variants, where vermicompost was applied, either alone or in combination with plant preparations. Separate application of Symbivit or Plantaktiv did not have a statistically significant effect either on the length of extraradical mycelium or dry matter weight of the lettuce.

Keywords: vermicompost, plant preparations, arbuscular mycorrhiza, extraradical mycelium, root colonization, plant biomass
Grants and funding:

This work was supported by Ministry of Agriculture, Czech Republic, National Agency for Agricultural Research, Project QJ1220007: "The possibilities for reretention of reactive nitrogen from agriculture in the most vulnerable infiltration area of water resources".

Prepublished online: February 28, 2018; Published: September 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Stroblová, M., Prokopová, L., & Záhora, J. (2018). Effect of Vermicompost and Selected Plant Preparations on the Development of Arbuscular Mycorrhizal Symbiosis in Lettuce (Lactuca sativa). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis66(1), 195-201. doi: 10.11118/actaun201866010195
Download citation

References

  1. AL-GARNI, S. M. S. 2006. Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium. African J. Biotech., 5(2): 133-142.
  2. ARANCON, N. Q., EDWARDS, C. A., BIERMAN, P. et al. 2005. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yields of peppers in the field. Pedobiologia, 49(4): 297-306. DOI: 10.1016/j.pedobi.2005.02.001 Go to original source...
  3. ATIYEH, R. M., LEE, S., EDWARDS, C. A. et al. 2002. The influence of humic acids derived from organic wastes on plant growth. Biores. Technol., 84(1): 7-14. DOI: 10.1016/S0960-8524(02)00017-2 Go to original source...
  4. BALÁŽ, M. and VOSÁTKA, M. 2001: A novel inserted membrane technique for studies of mycorrhizal extraradical mycelium. Mycorrhiza, 11(6): 291-296. DOI: 10.1007/s00572-001-0135-8 Go to original source...
  5. CAVENDER, N. D., ATIYEH, R. M. and KNEE, M. 2003. Vermicompost stimulates mycorrhizal colonization of roots of Sorghum bicolor at the expence of plant growth. Pedobiologia, 47(1): 85-89. DOI: 10.1078/0031-4056-00172 Go to original source...
  6. CHAOUI, H. I., ZIBILSKE, L. M. and OHNO, T. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry, 35(2): 295-302. DOI: 10.1016/S0038-0717(02)00279-1 Go to original source...
  7. ENKHTUYA, B. 2005. Influence of arbuscular mycorrhizal symbiosis on ecophysiology of trees and grass in disturbed ecosystems. Ph.D. Thesis. Charles University, Faculty of Science, Department of Plant Physiology.
  8. GIOVANNETI, M. and MOSSE, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84(3): 489-500. DOI: 10.1111/j.1469-8137.1980.tb04556.x Go to original source...
  9. GRYNDLER, M., BALÁŽ, M., HRŠELOVÁ, H. et al. 2004. Mycorrhizal symbiosis - The coexistence of fungi with plant roots [in Czech: Mykorhizní symbióza - O soužití hub s kořeny rostlin]. 1st Edition. Prague: Academia.
  10. HAMEEDA, B., HARINI, G., RUPELA, O. P. et al. 2007. Effect of composts or vermikomposts on sorghum gowth and mycorrhizal colonization. African Journal of Biotechnology, 6(1): 9-12.
  11. HIDALGO, P. R. and HARKESS, R. L. 2002. Earthworm casting as a substrate amendment for chrysanthemum production. Hortscience, 37(7): 1035-1039. Go to original source...
  12. HIDALGO, P. R., MATTA, F. B. and HARKESS, R. L. 2006. Physical and chemical properties of substrates containing earthworm castings and effects on marigold growth. HortScience, 41: 1474-1476. Go to original source...
  13. JAVAID, A. and RIAZ, T. 2008. Mycorrhizal colonisation in different varieties of gladiolus and its relation with plant vegetative and reproductive growth. Int. J. Agric. Biol., 10(3): 278-282.
  14. JOSHI, R., SINGH, J. and VIG, A. P. 2015. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/Technology, 14(1): 137-159. DOI: 10.1007/s11157-014-9347-1 Go to original source...
  15. KHAOSAAD, T., GARCIA-GARRIDO, J. M., STEINKELLNER, S. et al. 2007. Take-all disease is systematically reduced in roots of mycorrhizal barley plants. Soil Biol. Biochem., 39(3): 727-734. DOI: 10.1016/j.soilbio.2006.09.014 Go to original source...
  16. KOSKE, R. E. and GEMMA, J. N. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92(4): 486-488. DOI: 10.1016/S0953-7562(89)80195-9 Go to original source...
  17. LAZCANO, C. and DOMÍNGUEZ, J. 2011. The use of vermicompost in sustainable agriculture: Impact on plant growth and soil fertility. In: MOHAMMAD, M. (Ed.). Soil Nutrients. Nova Science Publishers.
  18. LIU, A., HAMEL, C., ELMI, A., et al. 2002. Concentrations of K, Ca and Mg in maize colonised by arbuscular mycorrhizal fungi under field conditions. Can. J. Soil Sci., 82(3): 271-278. DOI: 10.4141/S01-022 Go to original source...
  19. MILLAR, J. A. and BALLHORN, D. J. 2013. Effect of mycorrhizal colonization and light limitation on growth and reproduction of lima bean (Phaseolus lunatus L.). J. Appl. Bot. Food Qual., 86: 172-179. Go to original source...
  20. MUSCOLO, A., BOVALO, F., GIONFRIDDO, F. et al. 1999. Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biol. Biochem., 31(9): 1303-1311. DOI: 10.1016/S0038-0717(99)00049-8 Go to original source...
  21. PLOŠEK, L. 2016. The soil application of treated biodegradable waste in combination with mineral fertilizers [in Czech: Aplikace zpracovaného biologicky rozložitelného odpadu v kombinaci s průmyslovými hnojivy do půdy]. Ph.D. Thesis. Mendel University in Brno. Faculty of Agronomy. Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition. Brno: MENDELU.
  22. PLOŠEK, L., ELBL, J., LOŠÁK, T. et al. 2017. Leaching of mineral nitrogen in the soil influenced by addition of compost and N-mineral fertilizer. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 67(7): 607-614. DOI: 10.1080/09064710.2017.1322632 Go to original source...
  23. ROLDÁN, A., CARRASCO, L. and CARAVACA, F. 2006. Stability of desiccated rhizosphere soil aggregates of mycorrhizal Juniperus oxycedrus grown in a desertified soil amended with a composted organic residue. Soil Biology and Biochemistry, 38(9): 2722-2730. DOI: 10.1016/j.soilbio.2006.04.024 Go to original source...
  24. SABBAGH, S. K., POORABDOLLAH, A., SIROUSMEHR, A. et al. 2017. Bio-fertilizers and systemic acquired resistance in fusarium infected wheat. J. Agr. Sci. Tech., 19(2): 453-464.
  25. SEDLÁČEK, M., PAVLOUŠEK, P., LOŠÁK, T. et al. 2013. The effect of arbuscular mycorrhizal fungi on the content of macro and micro elements in grapevine (Vitis vinifera L.) leaves. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(1): 187-191. DOI: 10.11118/actaun201361010187 Go to original source...
  26. SIDDIQUI, Z. A. and MAHMOOD, I. 2001. Effect of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresource Technology, 79(1): 41-45. DOI: 10.1016/S0960-8524(01)00036-0 Go to original source...
  27. ST.JOHN, T. V., COLEMAN, D. C. and REID, C. P. P. 1983: Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology, 64(4): 957-959. DOI: 10.2307/1937216 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.