Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(6), 2241-2246 | DOI: 10.11118/actaun201563062241

Giant miscanthus (Miscantus × Giganteus Greef Et Deu.) - A Promising Plant for Soil Remediation: A Mini Review

Jindřich Figala, Valerie Vranová, Klement Rejšek, Pavel Formánek
Department of Geology and Soil Science, Faculty of Forestry and Wood Production, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

Giant miscanthus (Miscanthus × giganteus Greef et Deu.) is a perennial rhizomatous grass with C4 type photosynthesis, which is distinctive by its resistance to cold temperatures when maintaining a sufficient photosynthesis rate. We revised potential of Miscanhus for use in soil bioremediation, especially from biological point of view. Translocation rate from roots to aerial part is low in general, but Miscanthus is able to grow even on highly contaminated soils without artificial fertilization. We also discussed the role of root exudates in pollutant immobilization, chelation and uptake. Commetabolism of polycyclic aromatic hydrocarbons with assistance of soil microbes shows promising results and significant reduction of tetracyclic PAHs in soil. Miscanthus is therefore suitable for immobilization of inorganic pollutants in soil and removal of organic pollutants, which makes it suitable to create buffer zones for surface waterway protection, stabilization of heavily contaminated substrates (e.g. reclaimed burrows of mining industry and sedimentation pools). According to low content of pollutants in aerial biomass the harvested plant material is deemed safe for further agricultural or industrial use.

Keywords: Miscanthus × giganteus, phytoremediation, phytoextraction, root exudates, contamination, soil, heavy metals
Grants and funding:

This study was supported by the grant TA02020867 "Use of new organomineral stimulatory preparates and natural organic materials for renovation and revitalization of abiotically and biotically damaged forest stands", project IGA 55/2013 "Study of phytotoxicity mitigation on soils of spruce ecosystems of various age and management approach with emphasis on root exudates, organic matter decomposition and nutrient availability and sources" and project COST CZ n. LD14020 "A new compounds of watersoluble root exudates of Ambrosia artemisiifolia cultivated under different conditions".

Prepublished online: December 26, 2015; Published: January 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Figala, J., Vranová, V., Rejšek, K., & Formánek, P. (2015). Giant miscanthus (Miscantus × Giganteus Greef Et Deu.) - A Promising Plant for Soil Remediation: A Mini Review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis63(6), 2241-2246. doi: 10.11118/actaun201563062241
Download citation

References

  1. ARDUINI, I., MASONI, A., MARIOTTI, M. et al. 2004. Low cadmium application increase miscanthus growth and translocation. Environ. Exp. Bot., 52(2): 89-100. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0098847204000024. [Accessed: 11 March 2013]. DOI: 10.1016/j.envexpbot.2004.01.001 Go to original source...
  2. ARDUINI, I., MASONI, A. and ERCOLI, L. 2006a. Effects of high chromium applications on miscanthus during the period of maximum growth. Environ. Exp. Bot., 58: 234-243. [Online]. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0098847205001632. [Accessed: 9 March 2013. DOI: 10.1016/j.envexpbot.2005.09.004 Go to original source...
  3. BARCELÓ, J., POSCHENRIEDER, C. 2002. Fast root growth responses, root exudates, and internal detoxification as clues to mechanisms of aluminium toxicity and resistence: a review. Environ. Exp. Bot., 48(1): 75-92. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0098847202000138. [Accessed: 11 March 2013]. DOI: 10.1016/S0098-8472(02)00013-8 Go to original source...
  4. BHARGAVA, A., CARMONA, F. F., BHARGAVA, M. et al. 2012. Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manag., 105: 103-120. [Online]. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0301479712001831. [Accessed: 20 March 2013]. DOI: 10.1016/j.jenvman.2012.04.002 Go to original source...
  5. BRIMECOMBE, M. J., DE LEIJ, F. A. A. M. and LYNCH, J. M. 2007. Rhizodeposition and microbial populations. In: PINTON, R., VARANINI, Z., NANNIPIERI, P., The rhizosphere: biochemistry and organic substances at the soil-plant interface. 2nd ed. Boca Raton, FL, USA: CRC Press. Go to original source...
  6. FERNANDO, A. L., GODOVIKOVA, V., OLIVEIRA J. F. S. 2004. Miscanthus x giganteus: Contribution to a sustainable agriculture of a future/present - oriented biomaterial. Mater. Sci. Forum, 455-456: 437-441. DOI: 10.4028/www.scientific.net/MSF.455-456.437 Go to original source...
  7. FORMÁNEK P., AMBUS P. 2004. Assessing the use of δ13C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest. Rapid commun. mass sp., 18: 897-902. DOI: 10.1002/rcm.1424 Go to original source...
  8. FORMÁNEK, P., REJŠEK, K., VRANOVÁ, V. et al. 2009. Amino acids in root exudates of Miscanthus × giganteus. Amino Acids, 37: 49.
  9. GREEF, J. M. and DEUTER, M. 1993. Syntaxonomy of Miscanthus × giganteus Greef et Deu. Angew. Bot. / J. Appl. Bot., 67: 87-90.
  10. GREEF, J. M., DEUTER, M., JUNG, C. et al. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Gen. Resour. Crop Evol., 44(2): 185-195. DOI: 10.1023/A:1008693214629 Go to original source...
  11. GRATAO, P. L., PRASAD, M. N. V., CARDOSO, P. F. et al. 2005. Phytoremediation: green technology for the cleanup of toxic metals in the environment. Braz. J. Plant Physiol., 17(1): 53-64. DOI: 10.1590/S1677-04202005000100005 Go to original source...
  12. HUISMAN, W., VENTURI, P. and MOLENAAR, J. 1997. Costs of supply chains of Miscanthus giganteus. Ind. Crops Prod., 6(3-4): 353-366. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0926669097000265. [Accessed: 15 April 2013]. DOI: 10.1016/S0926-6690(97)00026-5 Go to original source...
  13. JONES, D. L., WILLIAMSON, K. L., OWEN, A. G. 2006. Phytoremediation of landfill leachate. Waste Manag., 26(8): 825-837. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0956053X0500190X. [Accessed: 15 April 2013]. DOI: 10.1016/j.wasman.2005.06.014 Go to original source...
  14. KIRWAN, K., JOHNSON, R. M., JACOBS, D. K. et al. 2007. Enhancing properties of dissolution compounded Miscanthus giganteus reinforced polymer composite systems. Part 1. Improving flexural rigidity. Ind. Crop Prod., 26(1): 14-27. DOI: 10.1016/j.indcrop.2006.12.013 Go to original source...
  15. LEE, J., REEVES, R. D., BROOKS, R. R. et al. 1977. Isolation and identification of a citratecomplex of nickel from nickel-accumulating plants. Phytochem., 16: 1503-1505. DOI: 10.1016/0031-9422(77)84010-7 Go to original source...
  16. LEWANDOWSKI, I., CLIFTON-BROWN, J. C., SCURLOCK, J. M. O. et al. 2000. Miscanthus: European experience with novel energy crop. Biomass Bioenerg., 19 (4): 209-227. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S0961953400000325. [Accessed: 11 April 2013]. DOI: 10.1016/S0961-9534(00)00032-5 Go to original source...
  17. LEWANDOWSKI, I., SCURLOCK J. M. O., LINDVALL, E. et al. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg., 25(4): 335-361. DOI: 10.1016/S0961-9534(03)00030-8 Go to original source...
  18. LOJKOVÁ, L., KLEJDUS, B., FORMÁNEK, P. et al. 2006. Supercritical fluid extraction of bio-available amino acids in soils and their liquid chromatographic determination with fluorimetric detection. J. Agric. Food Chem., 54(17): 6130-6138. DOI: 10.1021/jf061255k Go to original source...
  19. LINDE-LAURSEN, I. 1993. Cytogenetic analysis of Miscanthus "Giganteus", an interspecific hybrid. Hereditas, 119(3): 297-300. DOI: 10.1111/j.1601-5223.1993.00297.x Go to original source...
  20. MACKOVÁ, M. and MACEK, T. 2005. Využití rostlin k eliminaci xenobiotik z životního prostředí. Praha: Výzkumný ústav rostlinné výroby. [Online]. Available at: http://www.phytosanitary.org/projekty/2004/vvf-13-04.pdf. [Accessed: 20 April 2013].
  21. MARÍN, F., SÁNCHEZ, J. L., ARAUZO, J. et al. 2009. Semichemical pulping of Micanthus giganteus. Effect of pulping conditions of some pulp and paper properties. Biores. Technol., 100(17): 3933-3940. DOI: 10.1016/j.biortech.2009.03.011 Go to original source...
  22. MARSCHNER, H. 1995. Mineral nutrition of higher plants. 2nd edition. London, UK: Academic Press.
  23. MENCH, M. and MARTIN, E. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil, 132(2): 187-196. DOI: 10.1007/BF00010399 Go to original source...
  24. MICHEL, R., MISCHLER, N., AZAMBRE, B. et al. 2006. Miscanthus x giganteus straw and pellets as sustainable fuels and raw material for activated carbon. Environ. Chem. Lett., 4(4): 185-189. DOI: 10.1007/s10311-006-0043-4 Go to original source...
  25. NEUKIRCHEN, D., HIMKEN, M., LAMMEL, J. et al. 1999. Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur. J. Agron., 11(3-4): 301-309. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S1161030199000313. [Accessed: 20 April 2013]. DOI: 10.1016/S1161-0301(99)00031-3 Go to original source...
  26. PŁAŻEK, A., DUBERT, F., JANOWIAK, F. et al. 2011. Plant age and in vitro or in vivo propagation considerably affect cold tolerance of Miscanthus × giganteus. Eur. J. Agron., 34(3): 163-171. DOI: 10.1016/j.eja.2011.01.002 Go to original source...
  27. POSPÍŠILOVÁ, L., FORMÁNEK, P., LIPTAJ, T. et al. 2011. Land use effects on carbon quality and soil biological properties in Eutric Cambisol. Acta Agr. Scand. B: Soil Plant Sci., 61(7): 661-669. Go to original source...
  28. REJŠEK, K., FORMÁNEK, P., PAVELKA, M. 2008. Estimation of protease activity in soils at low temperatures by casein amendment and with substitution of buffer by demineralized water. Amino Acids., 35(2): 411-417. DOI: 10.1007/s00726-007-0601-5 Go to original source...
  29. REJŠEK, K., VRANOVÁ, V., FORMÁNEK, P. 2012a. Determination of the proportion of total soil extracellular acid phosphomonoesterase (E.C. 3.1.3.2) activity represented by roots in the soil of different forest ecosystems. Sci. World J., 2012: 1-4. [Online]. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22701351. [Accessed: 15 March 2013]. DOI: 10.1100/2012/250805 Go to original source...
  30. REJŠEK, K., VRANOVÁ, V., PAVELKA, M. et al. 2012b. Acid phosphomonoesterase (E.C. 3.1.3.2) location in soil. J. Plant Nutr. Soil Sci., 175(2):196-211. DOI: 10.1002/jpln.201000139 Go to original source...
  31. SOUDEK, P., PETROVÁ, Š., BENEŠOVÁ, D. et al. 2008. Fytoremediace a možnosti zvýšení její účinnosti. Chem. Listy, 102(5): 346-352.
  32. STANDER, W. 1989. Determination of the highest biomass producing plant genera (C4 Grasses) of the World for temperate climates. In: Assessment study for the commission of the European communities. Munich, Germany.
  33. STRAŠIL, Z. 2009. Základy pěstování a možnosti využití ozdobnice (Miscanthus): Metodika pro praxi. Praha: Výzkumný ústav rostlinné výroby.
  34. SWAMINATHAN, K., ALABADY M. S., VARALA K. et al. 2010. Genomic and small RNA sequencing of Miscanthus × Giganteus shows the utility of sorghum as a reference genome sequence for Andropogonae grasses. Genome Biol., 11(2): R12. DOI: 10.1186/gb-2010-11-2-r12 Go to original source...
  35. TÉCHER, D., LAVAL-GILLY, P., HENRY, S. et al. 2011. Contribution of Miscanthus × giganteus root exudates to the biostimulation of PAH degradation: An in vitro study. Sci. Total Environ., 409(20): 4489-4495. DOI: 10.1016/j.scitotenv.2011.06.049 Go to original source...
  36. TÉCHER, D., MARTINEZ-CHOIS, C., LAVAL-GILLY, P. et al. 2012. Assessment of Miscanthus × giganteus for rhizoremediation of long term PAH contaminated soils. Appl. Soil Ecol., 62: 42-49. [Online]. Available at: http://www.sciencedirect.com/science/article/pii/S092913931200162X. [Accessed: 15 March 2013]. DOI: 10.1016/j.apsoil.2012.07.009 Go to original source...
  37. VRANOVÁ, V., FORMÁNEK, P., REJŠEK, K. et al. 2009. Selected kinetic parameters of soil microbial respiration in the A horizon of differently managed mountain forests and meadows of Moravian-Silesian Beskids Mts. Eurasian Soil Sci., 42(3): 318-325. [Online]. Available at: http://link.springer.com/article/10.1134%2FS1064229309030090. [Accessed: 2 April 2013]. DOI: 10.1134/S1064229309030090 Go to original source...
  38. VRANOVÁ, V., REJŠEK, K., SKENE, K. et al. 2011. Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil., 342(1-2): 31-48. [Online]. Available at: http://link.springer.com/article/10.1007%2Fs11104-010-0673-y. [Accessed: 2 April 2013]. DOI: 10.1007/s11104-010-0673-y Go to original source...
  39. VRANOVÁ, V., ZAHRADNÍČKOVÁ, H., JANOUŠ, et al. 2012. The significance of Damino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps. Plant Soil, 354(1-2): 21-39. [Online]. Available at: http://link.springer.com/article/10.1007%2Fs11104-011-1059-5. [Accessed: 6 April 2013]. DOI: 10.1007/s11104-011-1059-5 Go to original source...
  40. VRANOVÁ, V., REJŠEK, K., SKENE, K. R. et al. 2013. Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review. J. Plant Nutr. Soil Sci., 176(2): 175-199. DOI: 10.1002/jpln.201000360 Go to original source...
  41. WANAT, N., AUSTURUY, A., JOUSSEIN, E. et al. 2013: Potential of Miscanthus × giganteus grown on highly contaminated technosols. J. Geochem. Explor., 126-127: 78-84. DOI: 10.1016/j.gexplo.2013.01.001 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.