Acta Univ. Agric. Silvic. Mendelianae Brun. 2023, 71(6), 317-328 | DOI: 10.11118/actaun.2023.022

JUSTIFICATION OF THE AREA AND PARAMETERS OF STRAW EMISSION BY WORKING BODIES OF A GRAIN HARVEST SPREADER WHEN HARVESTING LOW YIELD GRAIN CROPS

Vladimir Leonidovich Astafiev1, Eduard Viktorovisch Zhalnin2, Timur Aidarbekovich Murzabekov3, Ulyana Vladimirovna Zhivulko4
1 Kostanay branch of LLC "Scientific Production Center of Agricultural Engineering", Kazakhstan, 110011, Kostanay, Abai Avenue, 34
2 Federal Scientific Agroengineering Center VIM, 1st Institute pas. 5, Moscow, 109428, Russia
3 Kostanay Regional University "A. Baitursynov", Department of Machines, Vehicles and Tractors, Kazakhstan, 110000, Kostanay, Baytursynov Street 47
4 Federal State Budgetary Educational Institution of Higher Education <<South Ural State Agrarian University>>

The uniform distribution of chopped straw across the working width of the headers of 9-12 m posed a significant production challenge during grain harvesting in the conditions of the northern region of Kazakhstan. Research methods included theoretical and experimental studies. It was found that in order to increase the width and reduce the uneven spread of the chopped mass over the field, it is necessary to ensure that the initial speed of the chopped straw ejection is 63 m/s and the angle of inclination of the trajectory of the chopped mass to the horizon is about 15 degrees; and the ejection of the chopped mass should be carried out from the fourth sector of the left spreader and the third sector of the right spreader, closer to the periphery of the radius. Based on the results obtained, a low-energy straw spreader was developed and tested. It has been established that with a straw moisture content of 10-20%, the developed spreader provides a maximum spread width of 12-10 m, respectively, a distribution unevenness of 19-27%, and a chopping length of 23-25 cm.

Keywords: soil mulching with straw, straw ejection area in the spreader, initial spread speed, initial angle of inclination of the trajectory, spreading width and unevenness

Received: May 30, 2023; Revised: October 31, 2023; Accepted: November 24, 2023; Published: January 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Leonidovich Astafiev, V., Zhalnin, E.V., Aidarbekovich Murzabekov, T., & Zhivulko, U.V. (2023). JUSTIFICATION OF THE AREA AND PARAMETERS OF STRAW EMISSION BY WORKING BODIES OF A GRAIN HARVEST SPREADER WHEN HARVESTING LOW YIELD GRAIN CROPS. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis71(6), 317-328. doi: 10.11118/actaun.2023.022
Download citation

References

  1. ACHARYA, C. L., BANDYOPADHYAY, K. K. and HATI, K. M. 2018. Mulches: Role in Climate Resilient Agriculture. Reference Module in Earth Systems and Environmental Sciences. Elsevier online Collection. https://doi.org/10.1016/B978-0-12-409548-9.11654-9 Go to original source...
  2. ACHARYA, C. L., HATI, K. M. and BANDYOPADHYAY, K. K. 2005. Mulches. In: Encyclopedia of Soils in the Environment. Elsevier Publication, pp. 521-532. Go to original source...
  3. AKHTAR, K., WANG, W., REN, G., KHAN, A., FENG, Y., YANG, G. and WANG, H. 2019. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environment International, 132: 105092. https://doi.org/10.1016/j.envint.2019.105092 Go to original source...
  4. AKHTAR, K., WANG, W., REN, G., KHAN, A., NIEENGUANG, KHAN, A., FENG, Y., YANG, G. and WANG, H. 2020. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Science of The Total Environment, 741: 140488. https://doi.org/10.1016/j.scitotenv.2020.140488 Go to original source...
  5. ANISKIN, V. I., ARTYUSHIN, A. A. et al. 2005. Initial requirements for basic machine technological operations in plant growing. Moscow: Rosinformagrotech.
  6. CASE IH HARVESTING. 2023. Harvesting Tips used in North America and other harvesting advice. CASE IH HARVESTING [online]. Available at: https://caseihharvesting.com/harvestingtips/ [accessed: 2023, August 18].
  7. CLAAS. 2021. of combines Lexion. CLAAS [online]. Available at: https://www.claasofamerica.com/product/combines [accessed: 2021, January 15].
  8. DEUTZ FAHR. 2021. Straw management. Deutz Fahr [online]. Available at: https://www.deutz-fahr.com/en-ba/products/combine-harvesters [accessed: 06 October 2021].
  9. DOSPEKHOV, B. A. 1965. Methodology of Field Tests. Moscow, Russia: Kolos Publisher.
  10. FENDT. 2021. Choose between 3 straw distribution settings. FENDT [online]. Available at: https://www.fendt.com/uk/combines [accessed: 2021 October 06].
  11. HAN, Y., MA, W., ZHOU, B., SALAH, A., GENG, M., CAO, C., ZHAN, M. and ZHAO, M. 2021. Straw return increases crop grain yields and K-use efficiency under a maize-rice cropping system. The Crop Journal, 9(1): 168-180. https://doi.org/10.1016/j.cj.2020.04.003 Go to original source...
  12. HUANG, W., WU, J., PAN, X., TAN, X., ZENG, Y., SHI, Q., LIU, T. and ZENG, Y. 2021. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China. Journal of Integrative Agriculture, 20(1): 236-247. https://doi.org/10.1016/S2095-3119(20)63347-0 Go to original source...
  13. JOHN DEERE. 2021. S Series Combines. 75 Years of Harvest Innovation. John Deere [online]. Available at: https://www.deere.com/en/harvesting/. [accessed: 2021, October 06].
  14. KUMHÁLA, F., KVÍZ, Z., MA©EK, J. and PROCHÁZKA, P. 2005. The measurement of plant residues distribution quality after harvest by conventional and axial combine harvesters. Plant, Soil and Environment, 51(6): 249-254. https://doi.org/10.17221/3582-PSE Go to original source...
  15. KORN, C., FEHRMANN, J., HERLITZIUS, T., FLANHARDT, M. and ACIMAS, A. 2012. Development of a straw chopper for combines for increased working width [in German: Entwicklung eines Mähdrescherstrohhäckslers für große Arbeitsbreiten]. Landtechnik, 67(1): 11-16.
  16. MASSEY FERGUSSON. 2021. Straw chopper. Massey Fergusson [online]. Available at: https://www.masseyferguson.com/en_gb/product/combine-harvesters/ [accessed: 2021, October 06].
  17. MÜLLER, H. and BISCHOFF, L. 2001. Investigations on straw distribution through the combine straw chopper [in German: Untersuchungen zur Strohverteilung durch den Strohhäcksler am Mähdrescher]. Landtechnik, 56(SH2): 458-459. https://doi.org/10.15150/lt.2001.2129 Go to original source...
  18. NEEDHAM, P. 2008. Chop It, Distribute It And Do It Evenly. Handout to Accompany Presentation at 2008 National No-Till Conference. Available at: http://needhamag.com/documents/needham_residue_management.pdf [accessed: 2023, August 18]
  19. NEW HOLLAND AGRICULTURE. 2021. Opti-Spread™ Plus system: spreading wide. Always. NEW HOLLAND [online]. Available at: https://agriculture.newholland.com/nar/en-us/equipment/products/combines-and-headers [accessed: 2021, October 06]
  20. QU, Y. and FENG, B. 2020. Straw mulching improved yield of field buckwheat (Fagopyrum) by increasing water-temperature use and soil carbon in rain-fed farmland. Acta EcologicaSinica, 42(1): 11-16. https://doi.org/10.1016/j.chnaes.2020.11.008 Go to original source...
  21. RAHMA, A. E., WARRINGTON, D. N. and LEI, T. 2019. Efficiency of wheat straw mulching in reducing soil and water losses from three typical soils of the Loess Plateau, China. International Soil and Water Conservation Research, 7(4): 335-345. https://doi.org/10.1016/j.iswcr.2019.08.003 Go to original source...
  22. RODIMTSEV, S. A. and YAGELSKY, M. Y. 2013. Assessment of the quality of work of grain harvester shredders. Don agrarian science bulletin, 1(21): 24-27.
  23. RYBALKIN, P. N. et al. 2001. Agrotechnical requirements for the main technological operations with adaptive technologies for the cultivation of winter crops and maize and new technical means for their implementation in the Krasnodar Territory. Krasnodar.
  24. SAMPO ROSENLEW. 2021. Manuals and spare parts. SAMPO ROSENLEW [online]. Available at: https://www.sampo-rosenlew.fi/combine-harvesters/ [accessed: 2021, October 06].
  25. SHI, Y., ZHANG, Q., LIU, X., JING, X., SHI, C. and ZHENG, L. 2021. Organic manure input and straw cover improved the community structure of nitrogen cycle function microorganism driven by water erosion. International Soil and Water Conservation Research, 10(1): 129-142. https://doi.org/10.1016/j.iswcr.2021.03.005 Go to original source...
  26. SKORLYAKOV, V. I, SERDYUK V. V. and NEGREBA O. N. 2013. Indicators of quality grinding and spreading straw combine harvesters of leading companies. Machinery and equipment for the village, 3: 30-33.
  27. SKORLYAKOV, V. I. and YURINA, T. I. 2015. Choice of parameters of accounting sites for assessing the quality of work of combine harvester choppers. Eurasian Union of Scientists, 4(13): 43-45.
  28. STANDARTINFORM. 2010. Combine harvesters. Test methods. GOST 28301-2007. FSUP Standartinform.
  29. UN. 2003. Straw as a fertilizer and its role in increasing soil fertility. Recommendations, Omsk in Russia.
  30. UN. 2012. Advanced Remote Sensing. Academic Press.
  31. VADAS, P. and SIMS, J. T. 2014. Soil Fertility: Phosphorus in Soils. Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09116-8 Go to original source...
  32. VON HÖRSTEN, D., LÜCKE, V. and HAGE, H. 2005. New development of a combine straw chopper [in German: Neuentwicklung eines Mähdrescherhäckslers - Versuchsergebnisse zu Wurfweiten und Häcksellängen.]. Landtechnik, 60(5): 258-259. https://doi.org/10.15150/lt.2005.1230 Go to original source...
  33. VOßHENRICH, H.-H. 1999. Straw distribution and chop quality in the field [in German: Strohverteilung und Häckselqualität auf Praxisflächen]. Landtechnik, 54(5): 306-308. https://doi.org/10.15150/lt.1999.2207 Go to original source...
  34. XIE, W., ZHANG, Y., LI, J., WEI, S., LI, X., YU, H. and GUAN, B. 2021. Straw application coupled with N and P supply enhanced microbial biomass, enzymatic activity, and carbon use efficiency in saline soil. Applied Soil Ecology, 168: 104128. https://doi.org/10.1016/j.apsoil.2021.104128 Go to original source...
  35. XU, C., HAN, X., ZHUGE, Y., XIAO, G., NI, B., XU, X. and MENG, F. 2021. Crop straw incorporation alleviates overall fertilizer-N losses and mitigates N2O emissions per unit applied N from intensively farmed soils: An in situ 15N tracing study. Science of The Total Environment, 764: 142884. https://doi.org/10.1016/j.scitotenv.2020.142884 Go to original source...
  36. YAGELSKY, M. Y. and RODIMTSEV, S. A. 2016. Development trends and classification of straw-choppers-spreaders of modern grain harvesters. Bulletin of OrelSAU, 3: 73-86. Go to original source...
  37. ZHANG, J., LI, W., ZHOU, Y., DING, Y., XU, L., JIANG, Y. and LI, G. 2021. Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice-wheat system. The Crop Journal, 9(5): 1191-1197. https://doi.org/10.1016/j.cj.2020.11.007 Go to original source...
  38. ZHANG, Y., WANG, J., GONG, S., XU, D., MO, Y. and ZHANG, B. 2021. Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts. Agricultural Water Management, 249: 106809. https://doi.org/10.1016/j.agwat.2021.106809 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.