Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67(2), 453-462 | DOI: 10.11118/actaun201967020453

Plants Recovery Performance from Water Stress

Viera Šajbidorová1, Dagmar Hillová1, Marek Živčák2, Helena Lichtnerová1
1 Department of Planting Design and Maintenance, Horticulture and Landscape Engineering Faculty, Slovak University of Agriculture in Nitra, Tulipánová 7, Nitra, Slovakia
2 Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra, Slovakia

Recovery of plants after water stress events represents their high suitability for the urban condition areas. Reaction to drought and recovery of woody plants Cornus mas L., Lonicera caerulea L. and perennials Alchemilla mollis (Buser) Rothm., Geranium maculatum L., Geranium x magnificum Hyl. 'Rosemoor' and Geranium 'Philippe Vapelle' were evaluate. Within a pot experiment the non-destructive methods of monitoring: measurement of chlorophyll content using chlorophyll meter CL-01, leaf stomatal conductance using Delta T Leaf porometer AP4 and modulated chlorophyll fluorescence using Hansatech FMS 1 were chosen. Based upon our results we may demonstrate different protective mechanisms of plants in water stress conditions. An increase in the chlorophyll concentration in stress-exposed tissues and recovery of stomatal conductance in Cornus mas L. and in Alchemilla mollis (Buser) Rothm. were observed. In Cornus mas L. and Lonicera caerulea L. the early recovery of parameter ɸPSII (after 2 days of re-watering) and the delayed recovery (after 6 days of re-watering) in Geranium plants and Alchemilla mollis (Buser) Rothm.) were shown.

Keywords: water stress, recovery performance, drought tolerant woody plants, drought tolerant perennials
Grants and funding:

This paper was created within the project KEGA Interactive experimental garden. Project registration number 035SPU-4/2016.

Received: October 15, 2018; Accepted: January 14, 2019; Published: April 29, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Šajbidorová, V., Hillová, D., Živčák, M., & Lichtnerová, H. (2019). Plants Recovery Performance from Water Stress. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis67(2), 453-462. doi: 10.11118/actaun201967020453
Download citation

References

  1. ANJUM, S. A., XIE, X., WANG, L., SALEEM, M. F., MAN, C. and LEI, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Africal Journal of Agriculutural Research, 6 (9): 2026-2032.
  2. DA RONCH, F., CAUDULLO, G., HOUSTON DURRANT, T. and DE RIGO, D. 2016. Cornus mas in Europe: distribution, habitat, usage and threats. In: SAN-MIGUEL-AYANZ, J., DE RIGO, D., CAUDULLO, G., HOUSTON DURRANT, T. AND MAURI, A. (Eds.). European Atlas of Forest Tree Species. Luxembourg: Publ. Off. EU.
  3. ENNAJEH, M., VADEL, A. M., COCHARD, H. and KHEMIRA, H. 2010. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. The Journal of Horticultural Science and Biotechnology, 85: 289-294. DOI: 10.1080/14620316.2010.11512670 Go to original source...
  4. EVANS, J. AND POORTER, H. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24(8): 755-767. DOI: 10.1046/j.1365-3040.2001.00724.x Go to original source...
  5. GALLÉ, A., HALDIMANN, P. and FELLER, U. 2007. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist, 74: 799-810. DOI: 10.1111/j.1469-8137.2007.02047.x Go to original source...
  6. GALMÉS, J., MEDRANO, H. and FLEXAS, J. 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175: 81-93. DOI: 10.1111/j.1469-8137.2007.02087.x Go to original source...
  7. GENTY, B., BRIANTAIS, J. M. and MAKER, N. R. 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemica et Biophysica Acta, 990: 87-92. DOI: 10.1016/S0304-4165(89)80016-9 Go to original source...
  8. GUTSCHICK, V. P. and BASSIRIRAD, H. 2003. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist, 160: 21-42. DOI: 10.1046/j.1469-8137.2003.00866.x Go to original source...
  9. HANSEN, R. and STAHL, F. 1993. Perennials and their garden habitats. Stuttgart: Ulmer.
  10. HILLOVÁ, D. 2016. Determination of Compositional Principles for Herbaceous Plantings in Dry Conditions. In: Drought Stress Tolerance in Plants. Vol 1. Springer, pp. 499-511. Go to original source...
  11. HILLOVÁ, D., LICHTNEROVÁ, H., MITOŠINKOVÁ, V., BRTÁŇOVÁ, M., RAČEK, M. and KUBUS, M. 2016. Effects of drought treatment on three matrix planting perennials. Acta Scientiarum Polonorum-Hortorum Cultus, 15(5): 133-144.
  12. YIN, J. and BAUERLE, T. L. 2017. A global analysis of plant recovery performance from water stress. Oikos, 126(10): 1377-1388. DOI: 10.1111/oik.04534 Go to original source...
  13. KALAJI, M. H., SCHANSKER, G. and LADLE, R. J. 2014. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis research, 122: 121-158. DOI: 10.1007/s11120-014-0024-6 Go to original source...
  14. LAURITZEN, E., MAUGHAN, T. and BLACK, B. 2015. Haskap (Blue Honeysuckle) in the Garden. Horticulture. Utah State University Extension. Utah State University.
  15. MIYASHITA, K., TANAKAMARU, S., MAITANI, T. and KIMURA, K. 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and experimental botany, 53: 205-214. DOI: 10.1016/j.envexpbot.2004.03.015 Go to original source...
  16. MUNNÉ-BOSCH, S. and ALEGRE, L. 2000. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta, 210: 925-931. DOI: 10.1007/s004250050699 Go to original source...
  17. MUNNÉ-BOSCH, S. and ALEGRE, L. 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31: 203-216. DOI: 10.1071/FP03236 Go to original source...
  18. PEGUERO-PINA, J. J., MORALES, F., FLEXAS, J., GIL-PELEGRÍN, E. and MOYA, I. 2008. Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia, 156: 1-11. DOI: 10.1007/s00442-007-0957-y Go to original source...
  19. ROLOFF, A., KORN, S. and GILLNER, S. 2009. The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban Forestry & Urban Greening, 8: 295-308. DOI: 10.1016/j.ufug.2009.08.002 Go to original source...
  20. SCHREIBER, U. 2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. In: PAPAGEORGIOU G. C. and GOVINDJEE (Eds.). Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, pp. 279-319. Go to original source...
  21. ŠAJBIDOROVÁ, V., LICHTNEROVÁ, H. and PAGANOVÁ, V. 2015. The impact of different water regime on chlorophyll fluorescence of Pyrus pyraster L. Sorbus domestica L. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 63(5): 1575-1579. DOI: 10.11118/actaun201563051575 Go to original source...
  22. TARDIEU, F. and DAVIES, W. J. 1993. Integration of hydraulic and chemical signalling in the control of stomatal conductanse and water status of droughted plants. Plant, Cell and Environment, 16: 341-349. DOI: 10.1111/j.1365-3040.1993.tb00880.x Go to original source...
  23. ŽIVČÁK, M. 2006. Využitie diverzity fyziologických reakcií pre skríning genotypov pšenice tolerantných na sucho. PhD Tehesis. Slovak University of Agriculture in Nitra, Slovakia.
  24. ŽIVČÁK, M., REPKOVA, J., OLŠOVSKÁ, K. and BRESTIČ, M. 2009. Osmotic adjustment in winter wheat varieties and its importance as a mechanism of drought tolerance. Cereal Research Communications, 37: 569-572.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.