SUBSTRATE AND COFACTOR BINDING INTERACTION STUDIES OF GALACTITOL -1- PHOSPHATE 5- DEHYDROGENASE FROM PEPTOCLOSTRIDIUM DIFFICILE

Authors

  • Siti Aisyah Razali Bioinformatics Research Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Puteri Sarah Diana Bioinformatics Research Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
  • Mohd Shahir Shamsir Bioinformatics Research Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
  • Nor Muhammad Mahadi Comparative Genomics and Genetics Research Centre, Malaysia Genome Institute, Kajang, Selangor, Malaysia
  • Rosli Mohd Illias Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.7598

Keywords:

Protein-ligand interaction, galactitol-1-phosphate 5-dehydrogenase, tagatose production, molecular docking

Abstract

Tagatose is a high value low calorie sweetener that is used as a sugar substitute in the food and pharmaceutical industry. The production of tagatose requires the conversion of galactitol-1-phosphate to tagatose-6-phosphate by galactitol-1-phosphate 5-dehydrogenase (PdGPDH). The objective of this work is to study the protein-ligand interaction between PdGPDH and its ligands; galactitol-1-phosphate, Zn2+ and NAD+. Understanding of this mechanism will provide an insight into the possible catalytic events in these domains, thus providing information for potential protein engineering to improve the tagatose production. A 3D model of PdGPDH was constructed to identify the catalytic and coenzyme binding domains. In order to understand the interaction of PdGPDH with its ligands, a docking analysis of PdGPDH-substrate, PdGPDH-Zn2+ and PdGPDH-NAD+ complex was performed using CDOCKER in Discovery Studio 4.0 (DS 4.0). A series of docking events were performed to find the most stable binding interaction for the enzyme and its ligands. This study found that Cys 37, His 58, Glu 59, Glu 142 residues from PdGPDH form an active site pocket similar to known GPDH. A catalytic Zn2+ binding domain and a cofactor NAD+ binding domain with strong hydrogen bonding contacts with the substrate and the cofactor were identified. The binding pockets of the enzyme for galactitol-1-phosphate, NAD+ and Zn2+ has been defined. The stability of PdGPDH with its ligand was verified by utilizing the molecular dynamic simulation of docked complex. The results from this study will assist future mutagenesis study and enzyme modification work to improve the tagatose production.

References

Bertelsen, H., Jensen, B. B., Buemann, B. 1999. D-Tagatose-a Novel Low-Calorie Bulk Sweetener With Prebiotic Properties. 98-109.

Mendoza, M. R., Olano, A., Villamiel, M. 2005. Chemical Indicators Of Heat Treatment In Fortified And Special Milks. Journal Of Agricultural And Food Chemistry. 53: 2995-2999.

Vastenavond, C. M., Bertelsen, H., Hansen, S. J., Laursen, R. S., Saunders, J., et al. 2011. Tagatose (d-tagatose). Alternative sweeteners. 197e221.

Wong, D. 2000. Sweetener Determined Safe In Drugs, Mouthwashes, And Toothpastes. Dentistry Today. 19(32): 34-35.

Moore, M. C. 2006. Drug Evaluation: Tagatose In The Treatment Of Type 2 Diabetes And Obesity. Current Opinion In Investigational Drugs (London, England: 2000). 7: 924-935.

Lu, Y., Levin, G., Donner, T. 2008. Tagatose, A New Antidiabetic And Obesity Control Drug. Diabetes, Obesity And Metabolism. 10: 109-134.

Levin, G. V., Zehner, L. R., Saunders, J. P., Beadle, J. R.1995. Sugar Substitutes: Their Energy Values, Bulk Characteristics, And Potential Health Benefits. The American Journal Of Clinical Nutrition. 62: 1161S-1168S.

Zehner, L. R., Levin, G. V., Saunders, J. P., Beadle, J. R.1995. d-Tagatose As Anti-hyperglycemic Agent. Google Patents.

Seri, K., Sanai, K., Negishi, S.1997. Prophylactic And Remedial Preparation For Diseases Attendant On Hyperglycemia, And Wholesome Food. EP, 0560284.

Park, C., Lee, J-S. 2013. Mini Review: Natural ingredients For Diabetes Which Are Approved By Korean FDA. Biomedical Research. 24: 164-169.

Levin, G. V. 2002. Tagatose, The New GRAS Sweetener And Health Product. Journal Of Medicinal Food. 5: 23-36.

Esteban-Torres M, Ãlvarez Y, Acebrón I, de las Rivas B, Muñoz R, et al. 2012. The Crystal Structure Of Galactitol-1-Phosphate 5-Dehydrogenase From Escherichia Coli K12 Provides Insights Into Its Anomalous Behavior On IMAC Processes. FEBS Letters. 586: 3127-3133.

Agarwal, P. K., Webb, S. P., Hammes-Schiffer, S. 2000. Computational Studies Of The Mechanism For Proton And Hydride Transfer In Liver Alcohol Dehydrogenase. Journal of the American Chemical Society. 122: 4803-4812.

Benavente, R., Esteban-Torres, M., Kohring, G-W, Cortés-Cabrera, Ã., Sánchez-Murcia, P. A., et al. 2015. Enantioselective Oxidation Of Galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from Escherichia coli. Acta Crystallographica Section D: Biological Crystallography. 71: 1540-1554.

Sudi, I. Y., Wong, E. L., Joyce-Tan, K. H., Shamsir, M. S., Jamaluddin, H., et al. 2012. Structure Prediction, Molecular Dynamics Simulation and Docking Studies of D-Specific Dehalogenase from Rhizobium sp. RC1. International Journal Of Molecular Sciences. 13: 15724-15754.

Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M. 1993. PROCHECK: A Program To Check The Stereochemical Quality Of Protein Structures. Journal Of Applied Crystallography. 26: 283-291.

Eisenberg, D., Lüthy, R., Bowie, J. U. 1997. VERIFY3D: Assessment Of Protein Models With Three-Dimensional Profiles. Methods In Enzymology. 277: 396-404.

Colovos, C., Yeates, T. O. 1993. Verification Of Protein Structures: Patterns Of Nonbonded Atomic Interactions. Protein Science. 2: 1511-1519.

Wiederstein, M., Sippl, M. J. 2007. Prosa-Web: Interactive Web Service For The Recognition Of Errors In Three-Dimensional Structures Of Proteins. Nucleic Acids Research. 35: W407-W410.

Benavente, R., Esteban-Torres, M., Kohring G-W, Cortés-Cabrera, Ã, Sánchez-Murcia, P. A., et al. 2015. Enantioselective Oxidation Of Galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from Escherichia coli. Acta Crystallographica Section D: Biological Crystallography. 71: 1540-1554.

Wu, G., Robertson, D. H., Brooks, C. L., Vieth, M. 2003. Detailed analysis Of Gridâ€Based Molecular Docking: A Case Study Of CDOCKER—A Charmmâ€Based MD Docking Algorithm. Journal of Computational Chemistry. 24: 1549-1562.

Tiwari, M., Lee, J-K. 2010. Molecular Modeling Studies Of L-Arabinitol 4-Dehydrogenase Of Hypocrea Jecorina: Its Binding Interactions With Substrate And Cofactor. Journal of Molecular Graphics and Modelling. 28: 707-713.

Van der Spoel, D., Lindahl, E., Hess, B. 2013. The GROMACS Development Team, GROMACS User Manual, version 4.6. 5.

Schuler, L. D., Daura, X., Van Gunsteren, W. F. 2001. An Improved GROMOS96 Force Field For Aliphatic Hydrocarbons In The Condensed Phase. Journal of Computational Chemistry. 22: 1205-1218.

SchuÈttelkopf, A. W., Van Aalten, D. M. 2004. PRODRG: A Tool For High-Throughput Crystallography Of Protein–Ligand Complexes. Acta Crystallographica Section D: Biological Crystallography. 60: 1355-1363.

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., et al. 1995. A Smooth Particle Mesh Ewald Method. The Journal of Chemical Physics. 103: 8577-8593.

Hess, B., Bekker, H., Berendsen, H. J., Fraaije, J. G. 1997. LINCS: A Linear Constraint Solver For Molecular Simulations. Journal Of Computational Chemistry. 18: 1463-1472.

Edgar, R. C., Batzoglou, S. 2006. Multiple Sequence Alignment. Current Opinion In Structural Biology. 16: 368-373.

Ishikawa, K., Higashi, N., Nakamura, T., Matsuura, T., Nakagawa, A. 2007. The First Crystal Structure Of L-Threonine Dehydrogenase. Journal Of Molecular Biology. 366: 857-867.

Bowyer, A., Mikolajek, H., Stuart, J., Wood, S., Jamil, F., et al. 2009. Structure And Function Of The L-Threonine Dehydrogenase (Tktdh) From The Hyperthermophilic Archaeon Thermococcus kodakaraensis. Journal Of Structural Biology. 168: 294-304.

Banfield, M. J., Salvucci, M. E., Baker, E. N., Smith, C. A. 2001. Crystal structure Of The NADP (H)-Dependent Ketose Reductase From Bemisia argentifolii at 2.3 Ã… Resolution. Journal Of Molecular Biology. 306: 239-250.

Tiwari, M. K., Singh, R. K., Singh, R., Jeya, M., Zhao, H., et al. 2012. Role Of Conserved Glycine In Zinc-Dependent Medium Chain Dehydrogenase/Reductase Superfamily. Journal of Biological Chemistry. 287: 19429-19439.

Shen, My, Sali, A. 2006. Statistical Potential For Assessment And Prediction Of Protein Structures. Protein Science. 15: 2507-2524.

Lesk, A. M. 1995. NAD-binding Domains Of Dehydrogenases. Current Opinion In Structural Biology. 5: 775-783.

Chaitanya, M., Babajan, B., Anuradha, C., Naveen, M., Rajasekhar, C., et al. 2010. Exploring The Molecular Basis For Selective Binding Of Mycobacterium Tuberculosis Asp Kinase Toward Its Natural Substrates And Feedback Inhibitors: A Docking And Molecular Dynamics Study. Journal Of Molecular Modeling. 16: 1357-1367.

Persson, B., Hedlund, J., Jörnvall, H. 2008. Medium-And Short-Chain Dehydrogenase/Reductase Gene And Protein Families. Cellular And Molecular Life Sciences. 65: 3879-3894.

Gonzalez-Duarte, R., Albalat, R. 2005. Merging Protein, Gene And Genomic Data: The Evolution Of The MDR-ADH Family. Heredity. 95: 184-197.

Nordling, E., Jörnvall, H., Persson, B. 2002. Mediumâ€Chain Dehydrogenases/Reductases (MDR). European Journal of Biochemistry. 269: 4267-4276.

Eklund, H., Plapp, B., Samama, J., Brändén, C. 1982. Binding Of Substrate In A Ternary Complex Of Horse Liver Alcohol Dehydrogenase. Journal of Biological Chemistry. 257: 14349-14358.

Baker, P. J., Britton, K. L., Rice, D. W., Rob, A., Stillman, T. J. 1992. Structural consequences Of Sequence Patterns In The Fingerprint Region Of The Nucleotide Binding Fold: Implications For Nucleotide Specificity. Journal Of Molecular Biology. 228: 662-671.

Bottoms, C. A., Smith, P. E., Tanner, J. J. 2002. A Structurally Conserved Water Molecule In Rossmann Dinucleotideâ€Binding Domains. Protein Science. 11: 2125-2137.

Downloads

Published

2016-05-30

Issue

Section

Science and Engineering

How to Cite

SUBSTRATE AND COFACTOR BINDING INTERACTION STUDIES OF GALACTITOL -1- PHOSPHATE 5- DEHYDROGENASE FROM PEPTOCLOSTRIDIUM DIFFICILE. (2016). Jurnal Teknologi, 78(6). https://doi.org/10.11113/jt.v78.7598