Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T09:04:18.106Z Has data issue: false hasContentIssue false

Immunological disturbance and infectious disease in anorexia nervosa: a review

Published online by Cambridge University Press:  24 June 2014

Rhonda F. Brown*
Affiliation:
School of Behavioural, Cognitive and Social Sciences, University of New England, Armidale, New South Wales, Australia
Roger Bartrop
Affiliation:
Department of Psychological Medicine, Royal North Shore Hospital, University of Sydney, New South Wales, Australia
C. Laird Birmingham
Affiliation:
Eating Disorders Program, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
*
Dr Rhonda F. Brown, School of Behavioural, Cognitive and Social Sciences, University of New England, Armidale NSW 2351, Australia. Tel: 02-6773 2410; Fax: 02-6773 3820; E-mail: rhonda.brown@une.edu.au

Abstract

Objective:

Severely malnourished patients with anorexia nervosa (AN) are reported to show fewer symptomatic viral infections and a poorer response to bacterial infection than controls. They are also reported to show mild immune system changes, although the relevance of these to altered infection disease presentation in AN and AN pathophysiology is unknown. Thus, in this paper, we suggest a range of immune system changes that might underpin these altered responses to common pathogens, and review a number of recent infectious disease findings for their utility in explaining the pathophysiology of AN.

Methods:

A systematic review of the literature pertaining to immunity and infectious disease in AN was performed.

Results:

AN is associated with leucopenia, and the increased spontaneous and stimulated levels of proinflammatory cytokines [i.e. interleukin (IL)-1β, IL-6 and tumour necrosis factor α). A range of less consistent findings are also reviewed. Most of these data were not controlled for length of illness, degree of malnutrition, micronutrient or vitamin deficiencies or recent refeeding and starvation.

Conclusion:

Cytokine disturbances have been suggested to be causally related to AN symptomatology and pathophysiology of AN, although the evidence supporting this assertion is lacking. Immune and cytokine changes in AN do, however, occur in association with a decreased incidence of symptomatic viral infection, decreased clinical response to bacterial infection leading to delayed diagnosis and increased morbidity and mortality associated with the infections.

Type
Review article
Copyright
Copyright © 2008 Blackwell Munksgaard

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowers, TK, Eckert, E. Leukopenia in anorexia nervosa. Arch Intern Med 1978;138:15201523. CrossRefGoogle ScholarPubMed
Devuyst, O, Lambert, M, Rodhain, J, Lefebvre, C, Coche, E. Haematological changes and infectious complications in anorexia nervosa: a case-control study. Q J Med 1993;86:791799. Google ScholarPubMed
Brown, RF, Bartrop, R, Beumont, P, Birmingham, CL. Bacterial infections in anorexia nervosa: delayed recognition increases complications. Int J Eat Disord 2005;37:161165. CrossRefGoogle ScholarPubMed
Brown, J, Mehler, P, Harris, R. Medical complications occurring in adolescents with anorexia nervosa. West J Med 2000;172:189193. CrossRefGoogle ScholarPubMed
Costin, C. The eating disorder sourcebook. A comprehensive guide to the causes, treatments and prevention of eating disorders. Los Angeles: Lowell House, 1997. Google Scholar
Halmi, K, Sunday, S, Strober, M. Perfectionism in anorexia nervosa: variation by clinical subtype, obsessionality, and pathological eating behavior. Am Med J Psychiatry 2000;157:17991805. CrossRefGoogle ScholarPubMed
Gold, PW, Gwirtsman, HE, Avgerinos, PCet al. Abnormal hypothalamic-pituitary-adrenal function in anorexia nervosa: pathophysiological mechanisms in underweight and weight-corrected patients. N Engl J Med 1986;314:13351342. CrossRefGoogle ScholarPubMed
Kontula, K, Andersson, LC, Huttunen, M, Pelkonen, R. Reduced level of cellular glucocorticoid receptors in patients with anorexia nervosa. Horm Metab Res 1982;14:619620. CrossRefGoogle ScholarPubMed
Invitti, C, Redaelli, G, Baldi, G, Cavagnini, F. Glucocorticoid receptors in anorexia nervosa and Cushing’s disease. Biol Psychiatry 1999;45:14671471. CrossRefGoogle ScholarPubMed
Baranowska, B, Rozbicka, G, Jeske, W, Abdel-Fattah, MH. The role of endogenous opiates in the mechanism of inhibited luteinizing hormone secretion in women with anorexia nervosa: the effect of naloxone on LH, follicle stimulating hormone, prolactin and β-endorphin secretion. J Clin Endocrinol Metab 1984;59:412416. CrossRefGoogle ScholarPubMed
Miyai, K, Yamamoto, T, Azukizama, M, Ishibashi, K, Kumahara, Y. Serum thyroid hormones and thyrotropin in anorexia nervosa. J Clin Endocrinol Metab 1975;40:334338. CrossRefGoogle ScholarPubMed
Newman, MM, Halmi, KA. The endocrinology of anorexia nervosa and bulimia nervosa. Endocrinol Metab Clin North Am 1988;17:195212. CrossRefGoogle ScholarPubMed
Herpertz, S, Albers, N, Wagner, Ret al. Longitudinal changes of circadian leptin, insulin and cortisol plasma levels and their correlation during refeeding in patients with anorexia nervosa. Eur J Endocrinol 2000;142:373379. CrossRefGoogle ScholarPubMed
Counts, DR, Gwirtsman, H, Carlsson, LM, Lesem, M, Cutler, GB Jr. The effect of anorexia nervosa and refeeding on growth hormone-binding protein, the insulin-like growth factors (IGFs), and the IGF-binding proteins. J Clin Endocrinol Metab 1992;75:762767. Google ScholarPubMed
Krassas, GE. Endocrine abnormalities in anorexia nervosa. Pediatr Endocrinol Rev 2003;1:4654. Google ScholarPubMed
Mant, MJ, Faragher, BS. The hematology of anorexia nervosa. Br J Haematol 1972;23:737749. CrossRefGoogle ScholarPubMed
Warren, MP, Vande Wiele, RL. Clinical and metabolic features of anorexia nervosa. Am J Obstet Gynecol 1973;117:435449. CrossRefGoogle ScholarPubMed
Marcos, A, Varela, P, Santacruz, I, Munoz-Velez, A, Morande, G. Nutritional status and immunocompetence in eating disorders: a comparative study. Eur J Clin Nutr 1993;47:787793. Google ScholarPubMed
Lampert, F, Lau, B. Bone marrow hypoplasia in anorexia nervosa. Eur J Pediatr 1976;124:6571. CrossRefGoogle ScholarPubMed
Seaman, JP, Kjeldsberg, CR, Linker, A. Gelatinous transformation of the bone marrow. Hum Pathol 1978;9:685692. CrossRefGoogle ScholarPubMed
Vande Berg, B, Malghem, J, Lecouvet, FE, Lambert, M, Maldague, BE. Distribution of serous-like bone marrow changes in the lower limbs of patients with anorexia nervosa: predominant involvement of the distal extremities. Am J Roentgenol 1996;166:621625. CrossRefGoogle Scholar
Amrein, PC, Friedman, R, Kosinski, K, Ellman, L. Hematological changes in anorexia nervosa. JAMA 1979;241:21902191. CrossRefGoogle ScholarPubMed
Dexter, TM, Allen, TD, Lajtha, LG. Conditions controlling the proliferation of haematopoietic stem cells in vitro. J Cell Physiol 1976;91:335344. CrossRefGoogle Scholar
Mehta, K, Gascon, P, Robbay, S. The gelatinous bone marrow (serous atrophy) in patients with acquired immunodeficiency syndrome. Arch Pathol Lab Med 1992;116:504508. Google ScholarPubMed
Lambert, M, Hubert, C, Depresseux, Get al. Hematological changes in anorexia nervosa are correlated with total body fat mass depletion. Int J Eat Disord 1997;21:329334. 3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Vande Berg, B, Malghem, J, Devuyst, O, Maldague, BE, Lambert, MJ. Anorexia nervosa: correlation between MR appearance of bone marrow and severity of disease. Radiology 1994;193:859864. CrossRefGoogle ScholarPubMed
Kay, J, Stricker, RB. Hematologic and immunological abnormalities in anorexia nervosa. South Med J 1983;76:10081010. CrossRefGoogle ScholarPubMed
Allende, LM, Corell, A, Manzanares, Jet al. Immunodeficiency associated with anorexia nervosa is secondary and improves after refeeding. Immunology 1998;94:543551. CrossRefGoogle ScholarPubMed
Mustafa, A, Ward, A, Treasure, J, Peakman, M. T-lymphocyte subpopulations in anorexia nervosa and refeeding. Clin Immunol Immunopathol 1997;82:282289. CrossRefGoogle ScholarPubMed
Nagata, T, Kiriike, N, Tobitani, W, Kawarada, Y, Matsunaga, H, Yamagami, S. Lymphocyte subset, lymphocyte proliferative response and soluble interleukin-2 receptor in anorexia patients. Biol Psychiatry 1999;45:471474. CrossRefGoogle Scholar
Vaisman, N, Barak, Y, Hahn, T, Karov, Y, Malach, L, Barak, V. Defective in vitro granulopoiesis in patients with anorexia nervosa. Pediatric Res 1996;40:108111. CrossRefGoogle ScholarPubMed
Vaisman, N, Hahn, T, Karov, Y, Sigler, E, Barak, Y, Barak, V. Changes in cytokine production and impaired hematopoiesis in patients with anorexia nervosa: the effect of refeeding. Cytokine 2004;26:255261. CrossRefGoogle ScholarPubMed
Golla, JA, Larson, LA, Anderson, CF, Lucas, AR, Wilson, WR, Tomasi, TB. An immunological assessment of patients with anorexia nervosa. Am J Clin Nutr 1981;34:27562762. CrossRefGoogle ScholarPubMed
Schattner, A, Steinbock, M, Tepper, R, Schonfeld, A, Vaisman, H, Hahn, T. Tumor necrosis factor production and cell-mediated immunity in anorexia nervosa. Clin Exp Immunol 1990a;79:6266. CrossRefGoogle ScholarPubMed
Schattner, A, Tepper, R, Steinbock, M, Hahn, T, Schoenfeld, A. TNF, interferon-γ and cell-mediated cytotoxicity in anorexia nervosa: effect of refeeding. J Clin Lab Immunol 1990;32:183184. Google ScholarPubMed
Brambilla, F, Ferrari, E, Panerai, Aet al. Psycho-immunoendocrine investigation in anorexia nervosa. Neuropsychobiology 1993;27:916. CrossRefGoogle ScholarPubMed
Mikhailidis, DP, Barradas, MA, De Souza, V, Jeremy, JY, Wakeling, A, Dandona, P. Adrenaline-induced hyperaggregability of platelets and enhanced thromboxane release in anorexia nervosa. Prostaglandins Leukot Med 1986;24:2734. CrossRefGoogle ScholarPubMed
Cason, J, Ainley, CC, Wolstencroft, RA, Norton, KR, Thompson, RP. Cell-mediated immunity in anorexia nervosa. Clin Exp Immunol 1986;64:370375. Google ScholarPubMed
Cravetto, CA, Nejrotti, M, Curtaz, G, Curtaz, G. Hematological findings and blood coagulation tests in anorexia nervosa. Arch Sci Med 1977;134:205209. Google ScholarPubMed
Smith, G, Robinson, PH, Fleck, A. Serum albumin distribution in early treated anorexia nervosa. Nutrition 1996;12:677684. CrossRefGoogle ScholarPubMed
Chandra, RK. Immunocompetence in undernutrition. J Pediatr 1972;81:11942000. Google ScholarPubMed
Chandra, RK, Kumari, S. Nutrition and immunity: an overview. J Nutr 1974;124:S1433S1435. CrossRefGoogle Scholar
Limone, P, Biglino, A, Bottino, Fet al. Evidence for a positive correlation between serum cortisol levels and IL-1β production by peripheral mononuclear cells in anorexia nervosa. J Endocrinol Invest 2000;23:422427. CrossRefGoogle ScholarPubMed
Stein, M, Miller, AH, Trestman, RL. Depression, the immune system, and health and illness. Arch Gen Psychiatry 1991;48:171177. CrossRefGoogle ScholarPubMed
Stein, M, Keller, S, Schleifer, S. Stress and immunomodulation: the role of depression and neuroendocrine function. J Immunol 1985;135:S827S833. CrossRefGoogle ScholarPubMed
McKenzie, DC. Markers of excessive exercise. Can J Appl Physiol 1999;24:6673. CrossRefGoogle ScholarPubMed
Wang, TS, Chou, YH, Shiah, IS. Combined treatment of olanzapine and mirtazapine in anorexia nervosa associated with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:306309. CrossRefGoogle ScholarPubMed
Nova, E, Samartin, S, Gomez, S, Morande, G, Marcos, A. The adaptive response of the immune system to the particular malnutrition of eating disorders. Eur J Clin Nutri 2002;56:S34S37. CrossRefGoogle Scholar
Hughes, S, Kelly, P. Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol 2006;28:577588. CrossRefGoogle ScholarPubMed
Fichter, MM, Pirke, KM. Effect of experimental and pathological weight loss on the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 1986;11:295305. CrossRefGoogle Scholar
Sauerwein, RW, Mulder, JA, Mulder, Let al. Inflammatory mediators in children with protein-energy malnutrition. Am J Clin Nutr 1997;65:15341539. CrossRefGoogle ScholarPubMed
Chandra, RK. Nutrition as a critical determinant in susceptibility to infection. World Rev Nutr Diet 1976;25:166168. CrossRefGoogle ScholarPubMed
Russell, GFM. The nutritional disorder in anorexia nervosa. J Psychosom Res 1967;11:141149. CrossRefGoogle ScholarPubMed
Pomeroy, C, Eckert, E, Hu, Set al. Role of interleukin-6 and transforming growth factor-β in anorexia nervosa. Biol Psychiatry 1994;36:836839. CrossRefGoogle ScholarPubMed
Vaisman, N, Hahn, T. Tumor necrosis factor-α and anorexia – cause or effect? Metabolism 1991;40:720723. CrossRefGoogle ScholarPubMed
Nova, E, Gomez-Martinez, S, Morande, G, Marcos, A. Cytokine production by blood mononuclear cells from in-patients with anorexia nervosa. Br J Nutr 2002;88:183188. CrossRefGoogle ScholarPubMed
Raymond, NC, Dysken, M, Bettin, Ket al. Cytokine production in patients with anorexia nervosa, bulimia nervosa and obesity. Int J Eat Disord 2000;28:293302. 3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Nagata, T, Tobitani, W, Kiriike, N, Iketani, T, Yamagami, S. Capacity to produce cytokines during weight restoration in patients with anorexia nervosa. Psychosom Med 1999;61:371377. CrossRefGoogle ScholarPubMed
Kahl, KG, Kruse, N, Rieckmann, P, Schmidt, MH. Cytokine mRNA expression patterns in the disease course of female adolescents with anorexia nervosa. Psychoneuroendocrinology 2004;29:1320. CrossRefGoogle ScholarPubMed
Smith, JW, Urba, WJ, Curti, BDet al. The toxic and hematologic effects of interleukin-1 α administered in a phase I trial to patients with advanced malignancies. J Clin Oncol 1992;10:11411152. CrossRefGoogle Scholar
Strassmann, G, Fong, M, Kenney, JS, Jacob, CO. Evidence for the involvement of interleukin-6 in experimental cancer cachexia. J Clin Invest 1992;89:16811684. CrossRefGoogle ScholarPubMed
Tracey, KJ, Wei, H, Manogue, KRet al. Cachectin/tumor necrosis factor induces cachexia, anemia and inflammation. J Exp Med 1988;167:12111227. CrossRefGoogle ScholarPubMed
Langstein, HN, Norton, JA. Mechanisms of cancer cachexia. Nutr Cancer 1991;5:103123. Google ScholarPubMed
Roubenoff, R, Grinspoon, S, Skolnik, PRet al. Role of cytokines and testosterone in regulating lean body mass and resting energy expenditure in HIV-infected men. Am J Physiol Endocr Metab 2002;283:E138E145. CrossRefGoogle ScholarPubMed
van Lettow, M, van der Meer, JW, West, CE, van Crevel, R, Semba, RD. Interleukin-6 and human immunodeficiency virus load, but not plasma leptin concentration predict anorexia and wasting in adults with pulmonary tuberculosis in Malawi. J Clin Endocrinol Metab 2005;90:47714776. CrossRefGoogle Scholar
Holden, RJ, Pakula, IS. The role of tumour necrosis factor-α in the pathogenesis of anorexia and bulimia nervosa, cancer cachexia and obesity. Med Hypotheses 1996;47:423438. CrossRefGoogle ScholarPubMed
Asarian, L, Langhans, W. Current perspectives on behavioral and cellular mechanisms of illness anorexia. Int Rev Psychiatry 2005;17:451459. CrossRefGoogle ScholarPubMed
Morrison, DC, Ryan, JL. Endotoxins and disease mechanisms. Ann Rev Med 1987;38:417432. CrossRefGoogle ScholarPubMed
Comerci, GD. Medical complications of anorexia nervosa and bulimia nervosa. Med Clin North Am 1990;74:12931310. CrossRefGoogle ScholarPubMed
Grimble, RF. Malnutrition and the immune response. 2. Impact of nutrients on cytokine biology in infection. Trans Royal Soc Trop Med Hyg 1994;88:615619. CrossRefGoogle ScholarPubMed
Ferrari, E, Brambilla, F, Solerte, SB. Primary and secondary eating disorders: a psychoneuroendocrine and metabolic approach. Adv Biosci 1993;90:185198. Google Scholar
Bendtzen, K. Interleukin-1, interleukin-6 and tumor necrosis factor in infection, inflammation and immunity. Immunol Lett 1988;19:183191. CrossRefGoogle ScholarPubMed
Misra, M, Miller, KK, Tsai, Pet al. Uncoupling of cardiovascular risk markers in adolescent girls with anorexia nervosa. J Pediatr 2006;149:763769. CrossRefGoogle ScholarPubMed
Bessler, H, Karp, L, Notti, Iet al. Cytokine production in anorexia nervosa. Clin Neuropharmacol 1993;16:237243. CrossRefGoogle ScholarPubMed
Polack, E, Nahmod, VE, Emeric-Sauval, Eet al. Low lymphocyte interferon-γ production and variable proliferative response in anorexia nervosa patients. J Clin Immunol 1993;13:445451. CrossRefGoogle ScholarPubMed
Brambilla, F, Ferrari, E, Brunetta, Net al. Immunoendocrine aspects of anorexia nervosa. Psychiatry Res 1996;62:97104. CrossRefGoogle ScholarPubMed
Brichard, SM, Delporte, ML, Lambert, M. Adipocytokines in anorexia nervosa: a review focusing on leptin and adiponectin. Horm Metab Res 2003;35:337342. Google ScholarPubMed
Monteleone, P, DiLieto, A, Castaldo, E, Maj, M. Leptin functioning in eating disorders. CNS Spectr 2004;9:523529. CrossRefGoogle ScholarPubMed
Misra, M, Miller, KK, Almazan, Cet al. Hormonal and body composition predictors of soluble leptin receptor, leptin, and free leptin index in adolescent girls with anorexia nervosa and controls and relation to insulin sensitivity. J Clin Endocrinol Metab 2004;89:34863495. CrossRefGoogle ScholarPubMed
Shimizu, T, Satoh, Y, Kaneko, Net al. Factors involved in the regulation of plasma leptin levels in children and adolescents with anorexia nervosa. Pediatr Int 2005;47:154158. CrossRefGoogle ScholarPubMed
Delporte, ML, Brichard, SM, Hermans, MP, Beguin, C, Lambert, M. Hyper adiponectinaemia in anorexia nervosa. Clin Endocrinol 2003;58:2229. CrossRefGoogle Scholar
Baranowska, B, Wolinska-Witort, E, Wasilewska-Dziubinska, E, Roguski, K, Martynska, L, Chmielowska, M. The role of neuropeptides in the disturbed control of appetite and hormone secretion in eating disorders. Neuro Endocrinol Lett 2003;24:431434. Google ScholarPubMed
Haas, V, Onur, S, Paul, Tet al. Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery. Am J Clin Nutr 2005;81:889896. CrossRefGoogle ScholarPubMed
Modan-Moses, D, Stein, D, Pariente, Cet al. Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients. J Clin Endocrinol Metab 2007;92:18431847. CrossRefGoogle ScholarPubMed
Housova, J, Anderlova, K, Krizova, Jet al. Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa. J Clin Endocrinol Metab 2005;90:13661370. CrossRefGoogle ScholarPubMed
Baranowska, B, Wolinska-Witort, E, Wasilewska-Dziubinska, E, Roguski, K, Chmielowska, M. Plasma leptin, neuropeptide Y and galanin concentrations in bulimia nervosa and in anorexia nervosa. Neuro Endocrinol Lett 2001;22:356358. Google ScholarPubMed
Eckert, ED, Pomeroy, C, Raymond, N, Kohler, PF, Thuras, P, Bowers, CY. Leptin in anorexia nervosa. J Clin Endocrinol Metab 1998;83:791795. Google ScholarPubMed
Brown, NW, Ward, A, Surwit, Ret al. Evidence for metabolic and endocrine abnormalities in subjects recovered from anorexia nervosa. Metabolism 2003;52:296302. CrossRefGoogle ScholarPubMed
Small, CJ, Stanley, SA, Bloom, SR. Appetite control and reproduction: leptin and beyond. Semin Reprod Med 2002;20:389398. CrossRefGoogle ScholarPubMed
Hebebrand, J, Muller, TD, Holtkamp, K, Herpertz-Dahlmann, B. The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry 2007;12:2335. CrossRefGoogle ScholarPubMed
Vaisman, N. Tumor necrosis factor during starvation. Am J Med 1989;87:115. CrossRefGoogle ScholarPubMed
Gruys, E, Toussaint, MJ, Niewold, TA, Koopman, SJ. Acute phase reaction and acute phase proteins. J Zhejiang Univ Sc 2005;6B:10451056. CrossRefGoogle Scholar
Le Page, C, Genin, P, Baines, MG, Hiscott, J. Interferon activation and innate immunity. Rev Immunogenet 2000;2:374386. Google ScholarPubMed
Houglum, JE. Interferon: mechanisms of action and clinical value. Clin Pharm 1983;2:2028. Google ScholarPubMed
Deitch, E, Maejima, AK, Berg, R. Effect of oral antibiotics and bacterial overgrowth on the translocation of the GI tract microflora in burned rats. J Trauma 1985;25:385392. CrossRefGoogle ScholarPubMed
Berg, RD. Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 1999;473:1130. CrossRefGoogle ScholarPubMed
Spaeth, G, Berg, RD, Specian, RD, Deitch, EA. Food without fibre promotes bacterial translocation from the gut. Surgery 1990;108:240246. Google ScholarPubMed
Deitch, EA, Winterton, J, Li, M, Berg, R. The gut as a portal of entry for bacteremia: role of protein malnutrition. Ann Surg 1987;205:681692. CrossRefGoogle Scholar
Deitch, EA. Bacterial translocation: the influence of dietary variables. Gut 1994;35:S23S27. CrossRefGoogle ScholarPubMed
Alverdy, JC, Aoys, E, Moss, GS. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 1988;104:185190. Google ScholarPubMed
Hsu, LKG. The treatment of anorexia nervosa. Am J Psychiatry 1986;143:573581. Google ScholarPubMed
Crisp, AH. Therapeutic outcome in anorexia nervosa. Can J Psychiatry 1981;126:232235. CrossRefGoogle Scholar
Mitchell, JE, Crow, S. Medical complications of anorexia nervosa and bulimia nervosa. Curr Opin Psychiatry 2006;19:438443. CrossRefGoogle ScholarPubMed
Ando, T, Brown, RF, Berg, RD, Dunn, AJ. Bacterial translocation can increase plasma corticosterone and brain catecholamine and indoleamine metabolism. Am J Physiol Regul Integr Comp Physiol 2000;279:R2164R2172. CrossRefGoogle ScholarPubMed
Dunn, AJ, Ando, T, Brown, RF, Berg, RD. HPA axis activation and neurochemical responses to bacterial translocation from the gastrointestinal tract. Ann NY Acad Sci 2003;992:2129. CrossRefGoogle ScholarPubMed
Gatt, M, Reddy, BS, MacFie, J. Review article: bacterial translocation in the critically ill–evidence and methods of prevention. Aliment Pharmacol Ther 2007;25:741757. CrossRefGoogle ScholarPubMed
Cruntu, FA, Benea, L. Spontaneous bacterial peritonitis: pathogenesis, diagnosis, treatment. J Gastrointestin Liver Dis 2006 2006;5:5156. Google Scholar
Pirlich, M, Norman, K, Lochs, H, Bauditz, J. Role of intestinal function in cachexia. Curr Opin Clin Nutr Metab Care 2006;9:603606. CrossRefGoogle ScholarPubMed
Krack, A, Sharma, R, Figulla, HR, Anker, SD. The importance of the gastrointestinal system in the pathogenesis of heart failure. Eur Heart J 2005;26:23682374. CrossRefGoogle ScholarPubMed
Calabrese, J, Kling, M, Gold, P. Alterations in immunocompetence during stress, bereavement and depression: focus on neuroendocrine regulation. Am J Psychiatry 1987;144:11231134. Google ScholarPubMed
Brambilla, F. Social stress in anorexia nervosa: a review of immunoendocrine relationships. Physiol Behav 2001;73:365369. CrossRefGoogle ScholarPubMed
Segerstrom, SC, Miller, GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of enquiry. Psychol Bull 2004;130:601630. CrossRefGoogle Scholar
O’Connor, TM, O’Halloran, DJ, Shanahan, F. The stress response and hypothalamic-pituitary-adrenal axis: from molecule to melancholia. Q J Med 2000;93:323333. CrossRefGoogle ScholarPubMed
Nagata, T, Yamada, H, Iketani, T, Kiriike, N. Relationship between plasma concentrations of cytokines, ratio of CD4 and CD8, lymphocyte proliferative responses, and depression and anxiety state in bulimia nervosa. J Psychosom Res 2006;60:99103. CrossRefGoogle Scholar
Beisel, WR. Infection-induced malnutrition – from cholera to cytokines. Am J Clin Nutr 1995;62:813819. CrossRefGoogle ScholarPubMed
Silverman, MN, Pearce, BD, Biron, CA, Miller, AH. Immune modulation of the hypothalamic-pituitary-adrenal axis during viral infection. Viral Immunol 2005;18:4178. CrossRefGoogle ScholarPubMed
Erkut, ZA, Endert, E, Huitinga, I, Swaab, DF. Cortisol is increased in post mortem cerebrospinal fluid of multiple sclerosis patients: relationship with cytokines and sepsis. Mult Scler 2002;8:229236. CrossRefGoogle Scholar
Mittleman, BB, Castellanos, FX, Jacobsen, LK, Rapoport, JL, Swedo, SE, Shearer, GM. Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J Immunol 1997;159:29942999. CrossRefGoogle ScholarPubMed
Reichenberg, A, Yirmiya, R, Schuld, Aet al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 2001;58:445452. CrossRefGoogle ScholarPubMed
Graves, MC, Mulder, DG. Autoimmune disease and the nervous system: biochemical, molecular and clinical update. West J Med 1992;156:639646. Google Scholar
Miossec, P. Cytokine abnormalities in inflammatory arthritis. Baillieres Clin Rheumatol 1992;6:373392. CrossRefGoogle ScholarPubMed
Park, RJ, Lawrie, SM, Freeman, CP. Post-viral onset of anorexia nervosa. Br J Psychiatry 1995;166:386389. CrossRefGoogle ScholarPubMed
Barbouche, MR, Levy-Soussan, P, Corcos, Met al. Anorexia nervosa and lower vulnerability to infections. Am J Psychiatry 1993;150:169170. Google ScholarPubMed
Yuki, N, Ichihashi, Y, Taki, T. Subclass of IgG antibody to GM1 epitope-bearing lipopolysaccharide of Campylobacter jejuniin patients with Guillain-Barre syndrome. J Neuroimmunol 1995;60:161164. CrossRefGoogle Scholar
Hadden, RD, Karch, H, Hartung, HPet al. Preceding infections, immune factors and outcome in Guillain Barre syndrome. Neurology 2001;56:758765. CrossRefGoogle ScholarPubMed
Panitch, HS. Influence of infections on exacerbations of multiple sclerosis. Ann Neurol 1994;36:S25S28. CrossRefGoogle ScholarPubMed
Yu, RK, Usuki, S, Ariga, T. Ganglioside molecular mimicry and its pathological roles in Guillain Barré syndrome and related diseases. Infect Immun 2006;74:65176527. CrossRefGoogle ScholarPubMed
Fetissov, SO, Hallman, J, Oreland, L, Klinterberg, B, Grenback, E, Hulting, A. Auto-antibodies against α-MSH, ACTH and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci U S A 2002;99:1715517160. CrossRefGoogle Scholar
Fetissov, SO, Harro, J, Jaanisk, Met al. Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proc Natl Acad Sci U S A 2005;102:1486514870. CrossRefGoogle ScholarPubMed
Marks, DL, Cone, RD. Central melanocortins and the regulation of weight during acute and chronic disease. Recent Prog Horm Res 2001;56:359376. CrossRefGoogle ScholarPubMed
Seeley, RJ, Drazen, DL, Clegg, DJ. The critical role of the melanocortin system in the control of energy balance. Ann Rev Nutr 2004;24:133149. CrossRefGoogle ScholarPubMed
Tomaszewicz-Libudzic, C, Brzozowska, A, Jagielska, G, Komender, J. Antimyocardial antibodies in anorexia nervosa. J Am Acad Child Adolesc Psychiatry 2004;43:13251326. CrossRefGoogle ScholarPubMed
Sokol, MS, Ward, PE, Tamiya, H, Kondo, DG, Houston, D, Zabriskie, JB. D8/17 expression on B lymphocytes in anorexia nervosa. Am J Psychiatry 2002;159:14301432. CrossRefGoogle Scholar
Wheatland, R. Chronic ACTH autoantibodies are a significant pathological factor in the disruption of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome, anorexia nervosa and major depression. Med Hypotheses 2005;65:287295. CrossRefGoogle ScholarPubMed
Fichter, MM, Doerr, P, Pirke, KM, Lund, R. Behavior, attitude, nutrition and endocrinology in anorexia nervosa. Acta Psychiatr Scand 1982;66:429444. CrossRefGoogle ScholarPubMed
Pomeroy, C, Mitchell, JE, Eckert, E. Risk of infection and immune function in anorexia nervosa. Int J Eat Disord 1992;12:4755. 3.0.CO;2-D>CrossRefGoogle Scholar
Dally, P. Anorexia nervosa William. London: Heinemann Medical Books Ltd, 1969; 3046. Google Scholar
Sibley, WA. Risk factors in multiple sclerosis. In: Raine, CS, McFarland, HF, Tourtellotte, WW, eds. Multiple sclerosis: clinical and pathogenetic basis. Chapman & Hall, 1997; 141148. Google Scholar
Johnston, RT. The virology of demyelinating diseases. Ann Neurol 1994;36:S54S60. CrossRefGoogle Scholar
Hughes, RAC. Pathogenesis of multiple sclerosis. J R Soc Med 1992;85:373376. Google ScholarPubMed
Sibley, WA, Foley, JM. Infection and immunity in multiple sclerosis. Ann NY Acad Sci 1965;122:457468. CrossRefGoogle Scholar
Theander, S. Anorexia nervosa: a psychiatric investigation of 94 female patients. Acta Psychiatr Scand 1970;214:S1S194. Google ScholarPubMed