Skip to main content
Log in

Dietary utility of enzyme-treated fish meal for juvenile Pacific bluefin tuna Thunnus orientalis

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

In order to develop an artificial diet, the dietary utility of enzyme-treated fish meal was investigated for juvenile Pacific bluefin tuna Thunnus orientalis (PBT). Diets containing each 63% of Chilean fish meal (FM), enzyme-treated chilean fish meal (EC) and enzyme-treated Peruvian fish meal (EP), with 10% bonito oil and raw sand lance Ammodytes personatus (SL) were fed to juvenile tuna six times per day for one week. In a different trial, diets EC and SL were fed to tuna six times per day for 2 weeks. Only diet EC sustained similar growth or caused lower survival and higher feed efficiency, hepato- and enterosomatic indices and final carcass lipid content as compared to those of SL. Diets FM and EP led to lower specific growth rate (SGR) but similar feed efficiency, survival and hepatosomatic index, yet higher enterosomatic index. Moreover, PBT fed diet EC for 2 weeks led to similar growth performance but higher final carcass and hepatic lipid contents, and plasma cholesterol and phospholipid levels than those fed SL. Carcass fatty acid composition of diet EC group had lower 20∶5 n-3 and 22∶6 n-3 levels than the SL group. These results revealed that EC, as a suitable dietary protein source, could sustain growth of PBT, while dietary bonito oil led to higher carcass lipid but lower accumulation of n-3 highly unsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Itoh T, Shiina Y, Tsuji S, Endo S, Tezuka N. Otolith daily increment formation in laboratory reared larval and juvenile bluefin tuna Thunnus orientalis. Fish. Sci. 2000; 66: 834–839.

    Article  CAS  Google Scholar 

  2. Block BA, Teo SLH, Walli A, Boustaray A, Stockesbury MJW, Farwell CJ, Weng KC, Dewar H, Williams TJ. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 2005; 434: 1121–1127.

    Article  PubMed  CAS  Google Scholar 

  3. Harada T, Kumai H, Mizuno K, Murata O, Nakamura M, Miyashita S, Furutani H. On rearing of young bluefin tuna. Mem. Fac. Agr. Kinki Univ. 1971; 4: 153–157.

    Google Scholar 

  4. Kumai H. Studies on bluefin tuna artificial hatching, rearing and reproduction. Nippon Suisan Gakkaishi 1998; 64: 601–605.

    Google Scholar 

  5. Sawada Y, Okada T, Miyashita S, Murata O, Kumai H. Completion of the pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle. Aquacult. Res. 2005; 36: 413–421.

    Article  Google Scholar 

  6. Miyashita S. Studies on the seedling production of the Pacific bluefin tuna Thunnus thynnus orientalis. Bull. Fish. Lab. Kinki Univ. 2002; 7: 1–171.

    Google Scholar 

  7. Takii K, Miyashita Y, Seoka M, Tanaka Y, Kubo Y, Kumai H. Changes in chemical levels and enzyme activities during embryonic development of bluefin tuna. Fish. Sci. 1997; 63: 1014–1018.

    CAS  Google Scholar 

  8. Miyashita S, Kato K, Sawada Y, Murata O, Ishitani Y, Shimizu K. Development of digestive system and digestive enzyme activities of larval and juvenile bluefin tuna Thunnus orientalis reared in the laboratory. Suisanzoshoku 1998; 46: 111–120.

    CAS  Google Scholar 

  9. Takii K, Hosokawa H, Shimeno S, Ukawa M, Kotani A, Yamada Y. Anesthesia, fasting tolerance, and nutrient requirement of juvenile northern bluefin tuna. Fish. Sci. 2005; 71: 499–503.

    Article  CAS  Google Scholar 

  10. Aguado-Gimenez F, Garcia-Garcia B. Changes in some morphometric relationships in Atlantic bluefin tuna (Thunnus thynnus thynnus Linnaeus, 1758) as a result of fattening process. Aquaculture 2005; 249: 303–309.

    Article  Google Scholar 

  11. Clarke S, Smart A, van Barneveld R, Carter C. The development and optimization of manufactured feeds for farmed southern bluefin tuna. Austasia Aquacult. 1997; 11: 59–62.

    Google Scholar 

  12. Carter CG, Bransden MP, van Barneveld RJ, Clarke SM. Alternative methods for nutrition research on the southern bluefin tuna Thunnus maccoyii: in vitro digestibility. Aquaculture 1999; 179: 57–70.

    Article  Google Scholar 

  13. Carter CG, Seeto GS, Smart A, Clarke S, van Barneveld RJ. Correlates of growth in farmed juvenile southern bluefin tuna Thunnus maccoyii (Castelnau). Aquaculture 1999; 161: 107–119.

    Article  Google Scholar 

  14. Halver JE. Nutrition of salmonid fish-III. Water-soluble vitamin requirement of chinook salmon. J. Nutr. 1957; 62: 225–243.

    PubMed  CAS  Google Scholar 

  15. AOAC. Official Method of Analysis of the Association of Official Analysis Chemists, 15th edn. AOAC, Arlington, VA. 1990.

    Google Scholar 

  16. Watanabe T, Takeuchi T. Evaluation of pollock liver oil as a supplement to diets for rainbow trout. Nippon Suisan Gakkaishi 1976; 42: 893–906.

    Google Scholar 

  17. Suzuki T, Srivastava AS, Kurokawa T. cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus. Comp. Biochem. Physiol. 2002; 131B: 63–70.

    CAS  Google Scholar 

  18. Takii K, Nakamura M, Urakawa K, Miyashita S, Nasu T, Kubo Y, Tanaka Y, Kumai H. Soybean trypsin inhibitors inhibit t trypsin-like and basic proteinase activities of culturedfishes. Fish. Sci. 1998; 64: 935–938.

    CAS  Google Scholar 

  19. Shimeno S, Takeda M, Takii K, Ono T. Post-feeding changes of digestion and plasma constituent in young yellowtail fed raw fish and formulated diets. Nippon Suisan Gakkaishi 1993; 59: 507–513.

    CAS  Google Scholar 

  20. Satoh K, Sanada Y. Comparisons of single moist pellet and mainly-raw-fish moist pellet on the growth, feed efficiency, and protein digestibility of yellowtail in low temperature period. Suisanzoshoku 1999; 47: 283–288.

    Google Scholar 

  21. Satoh K, Hitaka E, Kimoto K. Effect of water temperature on the protein digestibility of formula feed and mainly-raw-fish diet of young yellowtail. Nippon Suisan Gakkaishi 2000; 66: 243–248.

    CAS  Google Scholar 

  22. Harpatz S. L-Carnitine and attributed functions in fish culture and nutrition-a review. Aquaculture 2005; 249: 3–21.

    Article  Google Scholar 

  23. Moyes CD, Mathieu-Costello OA, Brill RW, Hotchachka PW, Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can. J. Zool. 1992; 70: 1246–1253.

    Article  CAS  Google Scholar 

  24. Shimeno S, Hosokawa H, Takeda M. Metabolic response of juvenile yellowtail to dietary carbohydrate to lipid ratios. Fish. Sci. 1996; 62: 945–949.

    CAS  Google Scholar 

  25. Takii K, Ukawa M, Nakamura M, Kumai H. Suitable lipid level in brown fish meal diet for red sea bream. Fish. Sci. 1995; 61: 841–844.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Cheol Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, SC., Takaoka, O., Kbiswas, A. et al. Dietary utility of enzyme-treated fish meal for juvenile Pacific bluefin tuna Thunnus orientalis . Fish Sci 74, 54–61 (2008). https://doi.org/10.1111/j.1444-2906.2007.01475.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01475.x

Key words

Navigation