Skip to main content
Log in

Association between bacterial community structures and mortality of fish larvae in intensive rearing systems

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Bacterial community structures were analyzed in water used for rearing fish larvae by fluorescence in situ hybridization. In Experiment 1, red sea bream Pagrus major larvae were reared in two commercial seed production tanks. The survival rate in Tank 1 was higher than in Tank 2, even though phytoplankton, Nannochloropsis sp., was added to both tanks. In Tank 2, γ-proteobacteria became dominant (∼70% of total bacteria) on day 13, there after heavy larval mortalities occurred. In Tank 1, however, α-proteobacteria and the Cytophaga-Flavobacterium cluster were predominant from day − 1 until day 13; no significant mortality was recorded. In Experiment 2, marble goby Oxyeleotris marmoratus larvae were cultured with or without Nannochloropsis sp. At the end of the experiment, larval survival rates in aquaria with Nannochloropsis sp. were significantly (P <0.05) higher than those without. In rearing water without Nannochloropsis sp., γ-proteobacteria increased during rearing. In rearing water with Nannochloropsis sp., α-prote obacteria and the Cytophaga-Flavobacterium cluster were predominant at the beginning of the experiments and the relative abundance of γ-proteobacteria was maintained at a lower level throughout the experiments. The predominance of α-proteobacteria and the Cytophaga-Flavobacterium cluster appears to be a good indicator of successful larval production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planas M, Cunha I. Larviculture of marine fish: problems and perspectives. Aquaculture 1999; 177: 171–190.

    Article  Google Scholar 

  2. Munro PD, Barbour A, Birkbeck TH. Comparison of the growth and survival of larval turbot in the absence of Vibrio anguillarum, Vibrio alginolyticus, or a marine Aeromonas sp. Appl. Environ. Microbiol. 1995; 61: 4425–4428.

    CAS  PubMed  Google Scholar 

  3. Skjermo J, Salvesen I, Øie G, Vadstein O. Microbially matured water: a technique for selection of a nonopportunistic bacterial flora in water that may improve performance of marine larvae. Aquacult. Int. 1997; 5: 13–28.

    Article  Google Scholar 

  4. Salvesen I, Skjermo J, Vadstein O. Growth of turbot (Scophthalmus maximus L.) during first feeding in relation to the proportion of r/K-strategists in the bacterial community of the rearing water. Aquaculture 1999; 175: 337–350.

    Article  Google Scholar 

  5. Verner-Jeffreys DW, Shields RJ, Bricknell IR, Birkbeck TH. Effects of different water treatment methods and antibiotic addition on larval survival and gut microflora development in Atlantic halibut (Hippoglossus hippoglossus L.) yolk-sac larvae. Aquaculture 2004; 232: 129–143.

    Article  CAS  Google Scholar 

  6. Olafsen JA. Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 2001; 200: 223–247.

    Article  Google Scholar 

  7. Bourne DG, Young N, Webster N, Payne M, Salmon M, Demel S, Hall M. Microbial community dynamics in a larval aquaculture system of the tropical rock lobster, Panulirus ornatus. Aquaculture 2004; 242: 31–51.

    Article  Google Scholar 

  8. Jorquera MA, Lody M, Leyton Y, Riquelme C. Bacteria of subclass γ-Proteobacteria associated with commercial Argopecten purpuratus (Lamark, 1819) hatcheries in Chile. Aquaculture 2004; 236: 37–51.

    Article  Google Scholar 

  9. Tolomei A, Burke C, Crer B, Carson J. Bacterial decontamination of on-grown Artemia. Aquaculture 2004; 232: 357–371.

    Article  Google Scholar 

  10. Schulze AD, Alabi AO, Tattersall-Sheldrake AR, Miller KM. Bacterial diversity in a marine hatchery: balance between pathogenic and potentially probiotic bacterial strains. Aquaculture 2006; 256: 50–73.

    Article  Google Scholar 

  11. Itoi S, Niki A, Sugita H. Changes in microbial communities associated with the conditioning of filter material in recirculating aquaculture systems of the pufferfish Takifugu rubripes. Aquaculture 2006; 256: 287–295.

    Article  Google Scholar 

  12. Glöckner FO, Fuchs BM, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 1999; 65: 3721–3726.

    PubMed  Google Scholar 

  13. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst. Appl. Microbiol. 1992; 15: 593–600.

    Google Scholar 

  14. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer K. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacterioides in the natural environment. Microbiology 1996; 142: 1097–1106.

    Article  CAS  PubMed  Google Scholar 

  15. Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 1980; 25: 943–948.

    Article  Google Scholar 

  16. Verdonck L, Swings J, Kersters K, Dehasque M, Sorgeloos P, Leger P. Variability of the microbial environment of rotifer Brachionus plicatilis and Artemia production systems. J. World Aquaculture Soc. 1994; 25: 55–59.

    Article  Google Scholar 

  17. Verdonck L, Grisez L, Sweetmann E, Minkoff G, Sorgeloos P, Ollevier F, Swings J. Vibrios associated with routine productions of Brachionus plicatilis. Aquaculture 1997; 149: 203–214.

    Article  Google Scholar 

  18. Eddy SD, Jones SH. Microbiology of summer flounder Paralichthys dentatus fingerling production at a marine fish hatchery. Aquaculture 2002; 211: 9–28.

    Article  Google Scholar 

  19. Grisez L, Reyniers J, Verdonck L, Swings J, Ollevier F. Dominant intestinal microflora of sea bream and sea bass larvae, from two hatcheries, during larval development. Aquaculture 1997; 155: 387–399.

    Article  Google Scholar 

  20. Pedersen K, Dalsgaard I, Larsen JL. Vibrio damsela associated with diseased fish in Denmark. Appl. Environ. Microbiol. 1997; 63: 3711–3715.

    CAS  PubMed  Google Scholar 

  21. Balebona MC, Andreu MJ, Bordas MA, Zorrilla I, Morinigo MA, Borrego JJ. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microbiol. 1998; 64: 4269–4275.

    CAS  PubMed  Google Scholar 

  22. Fouz B, Alcaide E, Barrera R, Amaro C. Susceptibility of Nile tilapia (Oreochromis niloticus) to vibriosis due to Vibrio vulnificus biotype 2 (serovar E). Aquaculture 2002; 212: 21–30.

    Article  Google Scholar 

  23. Eilers H, Pernthaler J, Glöckner FO, Amann R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 2000; 66: 3044–3051.

    Article  CAS  PubMed  Google Scholar 

  24. Yokokawa T, Nagata T, Cottrell MT, Kirchman DL. Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol. Oceanogr. 2004; 49: 1620–1629.

    Google Scholar 

  25. Nicolas J-L, Corre S, Cochard J-C. Bacterial population association with phytoplankton cultured in a bivalve hatchery. Microb. Ecol. 2004; 48: 400–413.

    Article  PubMed  Google Scholar 

  26. Grossart H-P, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 2005; 7: 860–873.

    Article  CAS  PubMed  Google Scholar 

  27. Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN. Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl. Environ. Microbiol. 2005; 71: 3483–3494.

    Article  CAS  PubMed  Google Scholar 

  28. Nakase G, Eguchi M. Analysis of bacterial communities in Nannochloropsis sp. cultures used for larval fish production. Fish. Sci. 2007; 73: 543–549.

    Article  CAS  Google Scholar 

  29. Cottrell MT, Kirchman D. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high- molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 2000; 66: 1692–1697.

    Article  CAS  PubMed  Google Scholar 

  30. Waite AM, Olson RJ, Dam HG, Passow U. Sugar-containing compounds on the cell surfaces of marine diatoms measured using concanavalin A and flow cytometry. J. Phycol. 1995; 31: 925–933.

    Article  CAS  Google Scholar 

  31. Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ. Microbiol. 2001; 3: 304–311.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Eguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakase, G., Nakagawa, Y., Miyashita, S. et al. Association between bacterial community structures and mortality of fish larvae in intensive rearing systems. Fish Sci 73, 784–791 (2007). https://doi.org/10.1111/j.1444-2906.2007.01397.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01397.x

Key Words

Navigation