Skip to main content
Log in

Optimum dietary taurine level in casein-based diet for juvenile red sea bream Pagrus major

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effect of dietary taurine and cholyltaurine (C-tau) on growth and body composition of juvenile red sea Bream Pagrus major. Semi-purified casein-based diets supplemented with 0 (control diet), 0.1, 0.3, 0.5 and 0.7% taurine and 0.5% C-tau were fed to red sea bream (average body weight 4.7g) for 6 weeks at 20°C. The growth and feed efficiency were the lowest in fish fed the control diet. Taurine supplementation improved the growth and feed efficiency of fish dose-dependently, and the taurine requirement was estimated as 0.52% in terms of optimizing growth and 0.48% in terms of optimizing feed efficiency. Taurine content in the whole body and liver increased with the dietary taurine level. Supplemental C-tau at the 0.5% level had limited effects on the growth and no effect on body taurine, biliary bile salt and liver fat contents. From these results it can be inferred that the optimal dietary taurine requirement of juvenile red sea bream is 0.5% on a dry weight basis, and that the supplementation of taurine in the diet not only improves the growth but also increases hepatic lipid levels of red sea bream juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects cholesterolemia and flesh quality in rainbow trout. Aquaculture 1995; 133: 257–274.

    Article  CAS  Google Scholar 

  2. Watanabe T, Verakunpiriya V, Watanabe K, Viswanath K, Satoh S. Feeding of rainbow trout with non-fish meal diets. Fish. Sci. 1998; 69: 242–248.

    Google Scholar 

  3. Watanabe T, Aoki H, Shimamoto K, Hadzuma M, Maita M, Yamagata Y, Kiron V, Satoh S. A trial to culture yellowtail with non-fishmeal diets. Fish. Sci. 1998; 64: 505–512.

    CAS  Google Scholar 

  4. Takagi S, Hosokawa H, Shimeno S, Maita M, Ukawa M, Ueno S. Utilization of soy protein concentrate in a diet for red sea bream, Pagrus major. Aquacult. Sci. 1999; 47: 77–87.

    CAS  Google Scholar 

  5. Watanabe T, Aoki H, Shimamoto K, Watanabe K, Maita M, Yamagata Y, Satoh S. Quality evaluation of different types of non-fish meal diets for yellowtail. Fish. Sci. 2001; 67: 461–469.

    Article  CAS  Google Scholar 

  6. Goto T, Takagi S, Ichiki T, Sakai T, Endo M, Yoshida T, Ukawa M, Murata H. Studies on the green liver in cultured red sea bream fed low level and non-fish meal diets. Relationship between hepatic taurine and biliverdin levels Fish. Sci. 2001; 67: 58–63.

    Article  CAS  Google Scholar 

  7. Takagi S, Murata H, Goto T, Hayashi M, Hatate H, Yoshida T, Sakai T, Yamashita H, Ukawa M. Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagrus major fed low-fishmeal diet. Fish. Sci. 2006; 72: 1191–1199.

    Article  CAS  Google Scholar 

  8. Takagi S, Murata H, Goto T, Ichiki T, Munasinghe DMS, Endo M, Matsumoto T, Sakurai A, Hatate H, Yoshida T, Sakai T, Yamashita H, Ukawa M, Kuramoto T. The green liver syndrome is caused by taurine deficiency in yellowtail, Seriola quinqueradiata fed diets without fishmeal. Aquacult. Sci. 2005; 53: 279–290.

    CAS  Google Scholar 

  9. Danielsson H. Present states of research on catabolism and excretion of cholesterol. Adv. Lipid Res. 1963; 1: 335–385.

    PubMed  CAS  Google Scholar 

  10. Cantafora A, Blotta I, Rossi SS, Hofmann AF, Sturman JA. Dietary taurine content changes liver lipids in cats. J. Nutr. 1991; 121: 1522–1528.

    PubMed  CAS  Google Scholar 

  11. Cantafora A, Mantovani A, Masella R, Mechelli L, Alvaro D. Effect of taurine administration on liver lipids in guinea pig. Experientia 1986; 42: 407–408.

    Article  PubMed  CAS  Google Scholar 

  12. Goto T, Ui T, Une M, Kuramoto T, Kihira K, Hoshita T. Bile salt composition and distribution of the d-cysteinolic acid conjugated bile salts in fish. Fish. Sci. 1996; 62: 606–609.

    CAS  Google Scholar 

  13. Matsunari H, Furuita T, Yamamoto T, Kim SK, Sakakura Y, Takeuchi T. Effect of dietary taurine and cysteine on growth performance of red sea bream Pagrus major. Aquaculture 2008; 274: 142–147.

    Article  CAS  Google Scholar 

  14. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol Chem. 1957; 226: 497–509.

    PubMed  CAS  Google Scholar 

  15. Cantafora A, Di Biase A, Alvaro D, Angelico M. Improved method for measuring the glycine and taurine conjugates of bile salts by high-performance liquid chromatography with tauro 7α, 12α-dihydroxy-5β-cholanic acid as internal standard. J. Chromatogr. 1987; 386: 367–370.

    Article  PubMed  CAS  Google Scholar 

  16. Worden JA, Stipanuk MH. A comparison by species, age and sex of cysteinesulfinate decarboxylase activity and taurine concentration in liver and brain of animals. Comp. Biochem. Physiol. 1985; 82B: 233–239.

    CAS  Google Scholar 

  17. Takagi S, Shimeno S, Hosokawa H, Ukawa M. Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major fed low-fishmeal diet. Fish. Sci. 2001; 67: 1088–1096.

    Article  Google Scholar 

  18. Finkelstein JD, Martin JJ. Methionine metabolism in mammals: adaptation to methionine excess. J. Biol Chem. 1986; 261: 1582–1587.

    PubMed  CAS  Google Scholar 

  19. Goto T, Takahashi T, Kaimasu T, Takagi S, Mochizuki A. Distribution of hepatic cystathionine γ-lyase activity in fish. Aquacult. Sci. 2005; 53: 95–96.

    Google Scholar 

  20. Park GS, Takeuchi T, Yokoyama M, Seikai T. Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fish. Sci. 2002; 68: 824–829.

    Article  CAS  Google Scholar 

  21. Matsunari H, Takeuchi T, Takahashi M, Mushiake K. Effect of dietary taurine supplementation on growth performance of yellowtail juveniles Seriola quinqueradiata. Fish. Sci. 2005; 71: 1131–1135.

    Article  CAS  Google Scholar 

  22. Kim SK, Takeuchi T, Yokoyama M, Murata Y. Effect of dietary supplementation with taurine, β-alanine and GABA on the growth of juvenile and fingerling Japanese flounder Paralichthys olivaceus Fish. Sci. 2003; 69: 242–248.

    Article  CAS  Google Scholar 

  23. Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001; 199: 197–227.

    Article  CAS  Google Scholar 

  24. Hayes KC, Carey RE, Schmidt SY. Retinal degeneration associated with taurine deficiency in the cat. Science 1975; 188: 949–951.

    Article  PubMed  CAS  Google Scholar 

  25. Kim SW, Morris JG, Roges QR. Dietary soybean protein decreases plasma taurine in cats. J. Nutr. 1995; 125: 2831–2837.

    PubMed  CAS  Google Scholar 

  26. Sakai T, Suiko M, Sakaguchi H. Presence of biliverdin IXα in the gallbladder bile of red sea bream. Nippon Suisan Gakkaishi 1985; 51: 1871–1874.

    CAS  Google Scholar 

  27. Maita M, Maekawa J, Satoh K, Futami K, Satoh S. Disease resistance and hypocholesterolemia in yellowtail Seriola quinqueradiata fed a non-fishmeal diet. Fish. Sci. 2006; 72: 513–519.

    Article  CAS  Google Scholar 

  28. Yokogoshi H, Moshizuki H, Nanami K, Hida Y, Miyachi F, Oda H. Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J. Nutr. 1999; 129: 1705–1712.

    PubMed  CAS  Google Scholar 

  29. Iijima N, Tanaka S, Ota Y. Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish. Physiol. Biochem. 1998; 18: 59–69.

    Article  CAS  Google Scholar 

  30. Yamamoto T, Suzuki N, Furuita H, Sugita T, Tanaka N, Goto T. Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss. Fish. Sci. 2007; 73: 123–131.

    Article  CAS  Google Scholar 

  31. Shearer KD. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 1994; 119: 63–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsunari, H., Yamamoto, T., Kim, SK. et al. Optimum dietary taurine level in casein-based diet for juvenile red sea bream Pagrus major . Fish Sci 74, 347–353 (2008). https://doi.org/10.1111/j.1444-2906.2008.01532.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01532.x

Key words

Navigation