Skip to main content
Log in

Preparation and characterization of water-soluble chitosan produced by Maillard reaction

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The objective of this research was to improve the solubility of chitosan by Maillard reaction with 1% chitosan and 2% reducing sugar (glucose or glucosamine) dissolved in 0.2 M acetic acid, which was adjusted to pH 6.0, and incubated at either 50°C or 70°C for 1–7 days. The physicochemical and rheological properties of the chitosan-saccharide derivatives were also investigated. Results indicated that the solubility of modified chitosan derivatives was significantly greater than that of native chitosan. The solubility of chitosan-glucosamine was higher than that of chitosan-glucose, and the chitosan-glucosamine derivative remained soluble at pH 10. The degree of deacetylation of the derivatives decreased with increasing reaction time. Rheological investigation revealed that the apparent viscosity of the water-soluble chitosan derivatives in aqueous solution depended upon system conditions such as pH, ionic strength, and solution temperature. The measured apparent viscosity decreased as all system conditions increased. As calculated by the Arrhenius equation, the activation energy (E a) of the derivatives in aqueous solution generally decreased with increasing the extent of Maillard reaction with respect to the reducing sugars used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishimura Y, Kim HS, Ilota N, Arima H, Bom HS, Kim YH, Watanabe Y, Yukawa M, Ozawa T. Radioprotective effect of chitosan in sub-lethally X-ray irradiated mice. J. Radiat. Res. 2003; 44: 53–58.

    Article  PubMed  CAS  Google Scholar 

  2. Chung YC, Kuo CL, Chen CC. Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technol. 2005; 96: 1473–1482.

    Article  CAS  Google Scholar 

  3. Xie W, Xu P, Liu Q. Antioxidant activity of water-soluble chitosan derivatives. Bloorg. Med. Chem. Lett. 2001; 11: 1699–1701.

    Article  CAS  Google Scholar 

  4. Sugimoto M, Morimoto M, Sashiwa H, Shigemasa Y. Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydr. Polym. 1998; 36: 49–59.

    Article  CAS  Google Scholar 

  5. Holme KR, Perlin AS. Chitosan N-sulfate. A water-soluble polyelectrolyte. Carbohydr. Res. 1997; 302: 7–12.

    Article  PubMed  CAS  Google Scholar 

  6. Muzzarelli RAA, Hari P. Solubility and structure of N-carboxymethylchitosan. Int. J. Biol. Macromol. 1994; 6: 177–180.

    Article  Google Scholar 

  7. Delben F, Muzzarelli RAA, Terbojevich M. Thermodynamic study of the protonation and interaction with metal cations of three chitosan derivatives. Carbohydr. Polym. 1989; 11: 205–210.

    Article  CAS  Google Scholar 

  8. Muzzarelli RAA. Modified chitosan carrying sulfonic acid groups. Carbohydr. Polym. 1992; 5: 461–475.

    Article  Google Scholar 

  9. Muzzarelli RAA, Ilari P, Tomasetti M. Preparation and characteristic properties of 5-methylpyrrolidinone chitosan. Carbohydr. Polym. 1993; 20: 99–106.

    Article  CAS  Google Scholar 

  10. Dung PI, Milas M, Rinaudo M, Desbrieres J. Water soluble derivatives obtained by controlled chemical modifications of chitosan. Carbohydr. Polym. 1994; 24: 209–215.

    Article  Google Scholar 

  11. Jia Z, Shen D, Xu W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Res. 2001; 333: 1–6.

    Article  PubMed  CAS  Google Scholar 

  12. Ilyina AV, Tikhonov vE, Albulov AI, Variamov VP. Enzymic preparation of acid-free-water-soluble chitosan. Process Biochem. 2000; 35: 563–568.

    Article  CAS  Google Scholar 

  13. Kubota N, Tatsumoto N, Sano T, Taori K. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr. Res. 2000; 324: 268–274.

    Article  PubMed  CAS  Google Scholar 

  14. Zhai M, Kudoh H, Wach RA, Wu G, Lin M, Murya Y, Katsumura Y, Zhao L, Nagasawa N, Yoshii F. Laser photolysis of carboxymethylated chitin derivatives in aqueous solution. Part 2. Reaction of OH and SO4 2− radicals with carboxymethylated chitin derivatives. Biomacromolecules 2004; 5: 458–462.

    Article  PubMed  CAS  Google Scholar 

  15. Dutta U, Dain JA. Capillary electrophoretic analysis of advanced glycation endproducts formed from the reaction of reducing sugars with the amino group of glucosamine. Anal. Biochem. 2005; 343: 237–243.

    Article  PubMed  CAS  Google Scholar 

  16. Tessier FJ, Monnier VM, Sayre LM, Kornfield JA. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues. Biochem. J. 2003; 369: 705–719.

    Article  PubMed  CAS  Google Scholar 

  17. Kato A, Minaki K, Kobayashi K. Improvement of emulsifying properties of egg white protein by the attachment of polysaccharide through Maillard reaction in a dry state. J. Agric. Food Chem. 1993; 41: 540–543.

    Article  CAS  Google Scholar 

  18. Nakamura S, Kato A, Kobayashi K. Enhanced antioxidative effect of ovalbumin due to covalent binding of polysaccharides. J. Agric. Food Chem. 1992; 40: 2033–2037.

    Article  CAS  Google Scholar 

  19. Saeki H. Preparation of neoglycoprotein from carp myofibrillar protein by Maillard reaction with glucose: biochemical properties and emulsifying properties. J. Agric. Food Chem. 1997; 45: 680–684.

    Article  CAS  Google Scholar 

  20. Lin CW, Lin JC. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by facile fractionation method. Biomacromolecules 2003; 4: 1691–1697.

    Article  PubMed  CAS  Google Scholar 

  21. Usui M, Tamura H, Nakamura K, Ogawa T, Muroshita M, Azakami H, Kanuma S, Kato A. Enhanced bactericidal action and masking of allergen structure of soy protein by attachment of chitosan through Maillard-type proteinpolysaccharide conjugation. Nahrung 2004; 48: 69–72.

    Article  PubMed  CAS  Google Scholar 

  22. Toei K, Kohara T. A conductometric method for colloid titrations. Anal. Chim. Acta 1976; 83: 59–65.

    Article  CAS  Google Scholar 

  23. Yalpani M, Hall LD. Some chemical and analytical aspects of polysaccharide modification. 3. Formation of branchedchain, soluble chitosan derives. Macromolecules 1984; 17: 272–281.

    Article  CAS  Google Scholar 

  24. Yang TC, Chou CC, Li CF. Preparation, water solubility and rheological property of the N-alkylated mono or disaccharide chitosan derivatives. Food Res. Int. 2002; 35: 707–713.

    Article  CAS  Google Scholar 

  25. Sannan T, Kurita K, Iwakura Y. Studies on chitin, 2: effect of deacetylation on solubility. Makromol. Chem. 1976; 177: 3589–3600.

    Article  CAS  Google Scholar 

  26. Kato Y, Matsuki T, Kato N, Nakamura R. Maillard reaction of disaccharides with protein: suppressive effect of nonreducting end pyranoside groups on browning and protein. J. Agric. Food Chem. 1989; 37: 1077–1081.

    Article  CAS  Google Scholar 

  27. Chen RH, Lin WC, Lin JH. Effects of pH, ionic strength, and type of anion on the rheological properties of chitosan solutions. Acta Polym. 1994; 45: 41–46.

    Article  CAS  Google Scholar 

  28. Holdsworth SD. Rheological models used for the prediction of the flow properties of food products. Trans. Inst. Chem. Eng. Part C 1993; 71: 139–179.

    Google Scholar 

  29. Cabodevila O, Hill SE, Armstrong HJ, Sousa DI, Mitchell JR. Gelatin enhancement of soy protein isolate using the Maillard reaction and high temperature. J. Food Sci. 1994; 59: 872–878.

    Article  CAS  Google Scholar 

  30. Kogan G, Skorik YA, Zitnanova I, Krizkova L, Durackova Z, Gomes CAR, Yatluk YG, Krajcovic J. Antioxidant and antimutagenic activity of N-(2-carboxyethyl) chitosan. Toxicol. Appl. Pharmacol. 2004; 201: 303–310.

    Article  PubMed  CAS  Google Scholar 

  31. Nishimura SI, Kohgo O, Kurita K, Kuzuhara H. Chemospecific manipulations of a rapid polysaccharide: syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications. Macromolecules 1991; 24: 4745–4748.

    Article  CAS  Google Scholar 

  32. Heras A, Rodriguez NM, Ramos VM, Agullo E. N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr. Polym. 2001; 44: 1–8.

    Article  CAS  Google Scholar 

  33. Trung TS, Thein-Han WW, Qui NT, Ng CH, Stevens WF. Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresource Technol. 2006; 97: 659–663.

    Article  CAS  Google Scholar 

  34. Filar LJ, Wirick MG. Bulk and solution properties of chitosan. In: Muzzarelli RAA, Pariser ER (eds). Chitin and Chitosan. MIT Sea grant Program, Cambridge, MA, 1978; 169–181.

    Google Scholar 

  35. Wang W, Xu D. Viscosity and flow properties of concentrated solutions of chitosan with different degrees of deacetylation. Int. J. Biol. Macromol. 1994; 16: 149–152.

    Article  PubMed  CAS  Google Scholar 

  36. Nishi N, Ebina A, Nishimura S, Tsutsumi A, Hasegawa O, Tokura S. High phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: preparation and characterization. Int. J. Biol. Macromol. 1986; 8: 311–317.

    Article  CAS  Google Scholar 

  37. Flory PJ. Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY, 1953.

    Google Scholar 

  38. Rodriguez-Sanchez D, Kienzle-Sterzer CA, Rha C. Intrinsic viscosity of chitosan solution as affected by ionic strength. In: Hirano S, Tokura S (eds). Chitin and Chitosan, Japanese Society of Chitin and Chitosan, Sapporo, 1982; 30–33.

    Google Scholar 

  39. Bohdanecky M, Kovan J. Viscosity of Polymer Solutions. Elsevier, New York, 1982.

    Google Scholar 

  40. Lapasin R, Pricl S. Rheology of Industrial Polysaccharides: Theory and Applications. Blackie Academic and Professional/Chapman and Hall, Glasgow. 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Fang Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, Y.C., Tsai, C.F. & Li, C.F. Preparation and characterization of water-soluble chitosan produced by Maillard reaction. Fish Sci 72, 1096–1103 (2006). https://doi.org/10.1111/j.1444-2906.2006.01261.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2006.01261.x

Key Words

Navigation