Introduction of new Picard–S hybrid iteration with application and some results for nonexpansive mappings

Julee Srivastava (Department of Mathematics and Statistics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India)

Arab Journal of Mathematical Sciences

ISSN: 1319-5166

Article publication date: 5 March 2021

Issue publication date: 11 January 2022

978

Abstract

Purpose

In this paper, Picard–S hybrid iterative process is defined, which is a hybrid of Picard and S-iterative process. This new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid and Picard–Ishikawa hybrid iterative processes for contraction mappings and to find the solution of delay differential equation, using this hybrid iteration also proved some results for Picard–S hybrid iterative process for nonexpansive mappings.

Design/methodology/approach

This new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid, Picard–Ishikawa hybrid iterative processes for contraction mappings.

Findings

Showed the fastest convergence of this new iteration and then other iteration defined in this paper. The author finds the solution of delay differential equation using this hybrid iteration. For new iteration, the author also proved a theorem for nonexpansive mapping.

Originality/value

This new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid, Picard–Ishikawa hybrid iterative processes for contraction mappings and to find the solution of delay differential equation, using this hybrid iteration also proved some results for Picard–S hybrid iterative process for nonexpansive mappings.

Keywords

Citation

Srivastava, J. (2022), "Introduction of new Picard–S hybrid iteration with application and some results for nonexpansive mappings", Arab Journal of Mathematical Sciences, Vol. 28 No. 1, pp. 61-76. https://doi.org/10.1108/AJMS-08-2020-0044

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Julee Srivastava

License

Published in Arab Journal of Mathematical Sciences. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode


1. Introduction

Let E be a normed linear space and C be a non-empty convex subset of E. A mapping T:CC is called contraction if

(1.1)TxTyδxy
for all x,yC and δ(0,1).

Let C be a non-empty subset of a normed linear space E and T:CE a mapping. Then T is said to be nonexpansive if

TxTyxy,forallx,yC

A sequence xnC is an approximating fixed point sequence of T if limnxnTxn=0 . We say that xC is a fixed point of T if T(x)=x and denote F(T) the set of all fixed points of T.

In this paper, N denotes the set of all positive integers.

The Picard iterative process [1] is defined by the sequence {un} as follows:

(1.2)u1=uCun+1=Tun,nN

The Krasnoselskii iterative process [2] is defined by the sequence {vn}:

(1.3)v1=vCvn+1=(1λ)vn+λTvn,nN
where λ(0,1).

The Mann iteration [3] is defined by the sequence {wn}:

(1.4)w1=wCwn+1=(1αn)wn+αnTwn,nN
where {αn}(0,1) satisfies certain appropriate conditions.

The Ishikawa iterative process [4] is defined by the sequence {zn}:

(1.5)z1=zCzn+1=(1αn)zn+αnTynyn=(1βn)zn+βnTzn,nN
where {αn},{βn}(0,1) satisfies certain appropriate conditions.

S-iterative process [5] is defined by the sequence {qn}:

(1.6)q1=qCqn+1=(1αn)Tqn+αnTynyn=(1βn)qn+βnTqn,nN
where {αn},{βn}(0,1) satisfies certain appropriate conditions.

Many important non-linear problems of applied mathematics are usually constructed in the form of fixed point equation. These problems are related with physical problem of applied sciences and engineering.

The Picard iteration is the simple iteration for approximate solution of fixed point equation for non-linear contraction mapping. Some results based on Picard iteration are introduced by Chidume and Olaleru [6].

Khan [7] introduced the Picard–Mann hybrid iterative process defined by the sequence {sn}:

(1.7)s1=sCsn+1=Tynyn=(1αn)sn+αnTsn,nN
where {αn} is a real sequence in (0,1).

Okeke and Abbas [8] introduced the Picard–Krasnoselskii hybrid iterative process defined by the sequence {mn}:

(1.8)m1=mCmn+1=Tynyn=(1λ)mn+λTmn,nN
where λ(0,1).

Okeke [9] introduced the Picard–Ishikawa hybrid iterative process defined by the sequence {tn}:

(1.9)t1=tCtn+1=Tvnvvn=(1αn)tn+αnTunun=(1βn)tn+βnTtn,nN
where {αn},{βn} are real sequences in (0,1). Using hybridization with Picard, now I introduce Picard–S hybrid iterative process defined by the sequence {xn}:
(1.10)x1=xCxn+1=Tznzn=(1αn)Txn+αnTynyn=(1βn)xn+βnTxn,nN
where {αn} and {βn} are real sequences in (0,1) satisfying condition:
(1.11)n=1αnβn(1βn)=

Let {un} and {vn} be two fixed point iteration processes that converge to a certain fixed point p of a given operator T. The sequence {un} is better than {vn} if

unpvnp
for all nN (given by Rhodes [10]).

2. Preliminaries

Definition 2.1.

Let {an} and {bn} be two sequences of real numbers converging to a and b, respectively. If

limn|ana||bnb|=0
then {an} converges faster than {bn}.

Definition 2.2.

Let {un} and {vn} be two fixed point iterative processes, both converge to fixed point p of a given operator T. Suppose that the error estimates.

||unp||an,forallnN||vnp||bn,forallnN
are available, where {an} and {bn} are two sequences of positive numbers converging to 0. If {an} converges faster than {bn}, then {un} converges faster than {vn} to p.

Definition 2.3.

Let X be a Banach space. Then a function δX:[0,2][0,1] is said to be the modulus of convexity of X if

δX(ϵ)=inf{1x+y2:x1,y1,xyϵ}

It is easy to see that δX(0)=0 and δX(t)0 for all t0. References [1019] dealing with rate of convergence of iterative process. Some authors analyse its stability. We need following lemma to prove result.

Lemma 2.1.

Let {sn} be a sequence of positive real numbers which satisfies

sn+1(1μn)sn
If{μn}(0,1)andn=1μn=,thenlimnsn=0.

The aim of this paper is to introduce the Picard–S hybrid iterative process and to show that this new iterative process is faster than all of Picard, Krasnoselskii, Mann, Ishikawa in sense of Berinde [20], S-iteration in sense of Agarwal [5], Picard–Mann hybrid in sense of Khan [7], Picard–Krasnoselskii hybrid in sense of Okeke [8] and Picard–Ishikawa hybrid in the sense of Okeke [9].

Okeke already proved that Picard–Krasnoselskii hybrid iterative process converges faster than Picard, Krasnoselskii, Mann and Ishikawa. Khan [7] proved that Picard–Mann hybrid iterative process converges faster than Picard, Mann, Ishikawa iterative processes. Therefore, I show that my new Picard–S hybrid iterative process converges faster than S-iteration, Picard–Mann hybrid iteration, Picard–Krasnoselskii hybrid iteration and Picard–Ishikawa hybrid iterative process in the topic Rate of Convergence. In 2020, Zhao [21] proved existence and uniqueness of pseudo almost periodic solution for a class of iterative functional differential equations with delays depending on state. In next section, I find the solution of delay differential equation using Picard–S hybrid iterative process. Aynur Sahin [22] proved some strong convergence results of Picard–Krasnoselskii hybrid iterative process for a general class of contractive-like operator in hyperbolic space. In next section, I prove some results of Picard–S hybrid iterative process for nonexpansive mappings in uniformly convex Banach space.

3. Rate of convergence

Proposition 3.1.

Let C be a non-empty closed convex subset of a normed space E and let T be a contraction of C into itself. Suppose that each of the iterative process 1.6, 1.7, 1.8, 1.9 and 1.10 converges to the same fixed point p of T where {αn} and {βn} are sequences in (0.1) such that 0<λαn, βn<1 for all nN and for some λ and δ(0,1) is a Lipschitz constant for contraction mapping T. Then Picard–S hybrid iterative process defined by (1.10) converges faster than all the other four iterations.

Proof: Suppose that p is the fixed point of the operator T. Using (1.1) and S-iterative process (1.6), we have

(3.1)qn+1p(1αn)δqnp+αnδynpδ[(1αn)qnp+αn{(1βn)||qnp||+δβn||qnp||}]=δ[1(1δ)αnβn]qnp=[δδαnβn+δ2αnβn]qnp[δδαnβn+δαnβn]qnp=δqnpδ2qn1pδnq1pLetan=δnq1p
Now using (1.1) and Picard–Mann hybrid iterative process (1.7), we have
(3.2)sn+1P=Tynpδynp=δ[(1αn)snp+αnTsnp]δ[(1αn)snp+αnδsnp]=δ[(1αn+αnδ)snp]=δ(1(1δ)αn)snpδ(1(1δ)λ2)snp[δ(1(1δ)λ2)]ns1pLetbn=[δ(1(1δ)λ2)]ns1p

Using (1.1) and Picard–Krasnoselskii hybrid iteration (1.8)

(3.3)mn+1p=Tynpδynpδ(1λ)(mnp)+λ(Tmnp)δ[(1λ)mnp+λδmnp]=δ[(1(1δ)λ2)]mnp[δ(1(1δ)λ2)]nm1pLetcn=[δ(1(1δ)λ2)]nm1p

Using (1.1) and Picard–Ishikawa hybrid iterative process (1.9), we have

(3.4)tn+1p=Tvnpδvnpunp=(1βn)tn+βnTtnp(1βn)tnp+βnTtnp(1βn)tnp+βnδtnp=(1βn+βnδ)tnp=[1βn(1δ)]tnpvnp=(1αn)tn+αnTunp(1αn)tnp+αnTunp(1αn)tnp+αnδunp(1αn)tnp+αnδ[1βn(1δ)]tnp=[1αn+αnδ{1βn(1δ)}]tnp=[1αn+αnδαnβn(1δ)]tnp=[1αn(1δ)αnβn(1δ)]tnp[1αn(1δ)]tnpNow,tn+1pδ[1αn(1δ)]tnpδ[1λ2(1δ)]tnpδn[1λ2(1δ)]nt1pLetdn=δn[1λ2(1δ)]nt1p
Using (1.1) and Picard–S hybrid iterative process (1.10), we have
(3.5)xn+1p=Tznpδznpδ(1αn)Txn+αnTynpδ(1αn)(Txnp)+αn(Tynp)δ2(1αn)xnp+δ2αnynp=δ2[(1αn)xnp+αn{(1βn)xnp+βnδxnp}]=δ2[1αn+αn(1βn)+αnβnδ]xnp=δ2[1(1δ)αnβn]xnpδ2[1(1δ)λ2]xnp[δ2(1(1δ)λ2)]nx1pLeten=[δ2(1(1δ)λ2)]nx1p

Now compute the rate of convergence of Picard–S iterative process (1.10) as follows:

(i)enan=[δ2(1(1δ)λ2)]nδnq1px1p=δn(1(1δ)λ2)nx1pq1p0asn

Thus, {xn} converges faster than {qn} to p, i.e. the Picard–S hybrid iterative process (1.10) converges faster than the S-iterative process:

(ii)enbn=[δ2(1(1δ)λ2)]n[δ(1(1δ)λ2)]nx1ps1p=δnx1ps1p0asn

Thus, {xn} converges faster than {sn} to p, i.e. the Picard–S hybrid iterative process (1.10) converges faster than the Picard–Mann hybrid iterative process.

(3.6)(iii)encn=[δ2(1(1δ)λ2)]n[δ(1(1δ)λ2)]nx1pm1p=δnx1pm1p0asn

Thus, {xn} converges faster than {mn} to p, i.e. the Picard–S hybrid iterative process (1.10) converges faster than the Picard–Krasnoselskii hybrid iterative process.

(3.7)(iv)endn=[δ2(1(1δ)λ2)]nδn[1λ2(1δ)]nx1pt1p=δnx1pt1p0asn

Thus, {xn} converges faster than {tn} to p, i.e. Picard–S hybrid iterative process converges faster than Picard–Ishikawa hybrid iterative process. This completes the proof of the proposition.□

In [8], Okeke proved that the rate of convergence of Picard–Krasnoselskii hybrid iterative process is faster than Picard, Krasnoselskii, Mann and Ishikawa iterations. Agarwal et al. [5] proved that S-iteration converges faster than Picard, Krasnoselskii, Mann and Ishikawa iterative processes, and Okeke [9] proved that rate of convergence of Picard–Ishikawa hybrid iterative process is faster than Picard–Mann hibrid and Picard–Krasnoselskii iterations. Therefore, I give an example to show that rate of convergence of Picard–S hybrid iterative process is faster than Picard–Mann hybrid, Picard–Krasnoselskii hybrid and S-iteration. This will show that Picard–S hybrid defined by (1.10) converges to fixed point faster than all other iterations defined in this paper.

Example 3.1.

Let X=R and C=[1,10]X and T:CC be an operator defined by Tx=2x+43 for all xC. Choose αn=βn=λ=12 for each nN with initial value x1=5. For δ=143, T is a contraction mapping. All the processes converge to the same fixed point 2. It is clear from Table 1 and graphs that our Picard–S hybrid iterative process converges faster than Picard–Ishikawa hybrid, Picard–Mann hybrid, Picard–Krasnoselskii hybrid and S-iteration.

4. Application to delay differential equation

Here, I use this new Picard–S hybrid iterative process to find the solution of delay differential equations.

Let C[a,b] be a space of all continuous real valued function on a closed interval [a, b] be endowed with the Chebyshev norm:

xy=maxt[a,b]|x(t)y(t)|.

Space (C[a,b],) is known as Banach Space. In this section, the following delay differential equation has been taken:

(4.1)x(t)=f(t,x(t),x(tτ))t[a,b]
with initial condition
(4.2)x(t)=φ(t)t[toτ,to]

By the solution of above problem, we mean a function xC([toτ,b],R)(C1[to,b],R) satisfying (4.1) and (4.2). Assume that the following conditions are satisfied.

(C1) to,bR,τ>0;

(C2) fC([to,b]×R2,R);

(C3) φC([toτ,b],R);

(C4)there existsLf>0 such that

|f(t,u1,u2)f(t,v1,v2)|Lfi=12|uivi|ui,viR,i=1,2;t[to,b]

(C5) 2Lf(bto)<1;

Now we can reformulate problems (4.1) and (4.2) by the following integral equation:

x(t)={φ(t)t[toτ,to]φ(to)+totf(s,x(s),x(sτ))dst[to,b]

Coman [23] et al. established the following result.

Theorem 4.1.

Assume that the conditions (C1C5) are satisfied. Then problem (4.1) with initial condition (4.2) has unique solution p (say) in C([toτ,b],R)C1([to,b],R) and

p=limnTn(x)foranyxC([toτ,b],R).

Using Picard–S hybrid iterative process, I prove the following result.

Theorem 4.2.

Assume that (C1)(C5) are satisfied. Then problem (4.1) with initial condition (4.2) has unique solution p (say) in C([toτ,b],R)C1([to,b],R) and the Picard–S hybrid iterative process (1.10) converges to p.

Proof: Let {xn} be an iterative sequence generated by the Picard–S hybrid iterative process (1.10) for an operator defined by

Tx(t)={φ(t)t[toτ,to]φ(to)+totf(s,x(s),x(sτ))dst[to,b]

Let p be a fixed point of T, now I prove that xnp as n. It is easy to see that xnp for each t[toτ,to]. Now for each t[to,b], we have

(4.3)xn+1p=TznTp=maxt[toτ,b]|totf(s,zn(s),zn(sτ))f(s,p(s),p(sτ))ds|maxt[toτ,b]tot|f(s,zn(s),zn(sτ))f(s,p(s),p(sτ))|dsmaxt[toτ,b]totLf(|zn(s)p(s)|+|zn(sτ)p(sτ)|)dstotLf(maxt[toτ,b]|zn(s)p(s)|+maxt[toτ,b]|zn(sτ)p(sτ)|)ds=totLf(znp+znp)ds=2znptotLfds=2znpLf(tto)2Lf(bto)znp
Now,
(4.4)znp=(1αn)Txn+αnTynp=(1αn)(Txnp)+αn(Tynp)(1αn)Txnp+αnTynp
(4.5)Txnp=maxt[toτ,b]|Txn(t)Tp(t)|=maxt[toτ,b]|totf(s,xn(s),xn(sτ))dstotf(s,p(s),p(sτ))ds|maxt[toτ,b]tot|f(s,x(s),xn(sτ))f(s,p(s),p(sτ))|ds=maxt[toτ,b]totLf(|xn(s)p(s)|+|xn(sτ)p(sτ)|)dstotLf(maxt[toτ,b]|xn(s)p(s)|+maxt[toτ,b]|xn(sτ)p(sτ)|)dstotLf(xnp+xnp)ds=2Lf(tto)xnp2Lf(bto)xnp

Now,

(4.6)ynp=(1βn)xn+βnTxnp=(1βn)(xnp)+βn(Txnp)(1βn)xnp+βnTxnp

Now,

(4.7)||Tynp||=||TynTp||=maxt[toτ,b]|totf(s,yn(s),yn(sτ))dstotf(s,p(s),p(sτ))ds|maxt[toτ,b]tot|f(s,yn(s),yn(sτ))f(s,p(s),p(sτ))|dsmaxt[toτ,b]totLf(|yn(s)p(s)|+|yn(sτ)p(sτ)|)dstotLf(maxt[toτ,b]|yn(s)p(s)|+maxt[toτ,b]|yn(sτ)p(sτ)|)ds=totLf(ynp+ynp)ds=2ynptotLfds=2ynpLf(tto)2Lf(bto)ynp

Using (4.6) in (4.7), we get

(4.8)Tynp=TynTp2Lf(bt0){(1βn)xnp+βnTxnp}=2(1βn)Lf(bto)xnp+2βnLf(bto)Txnp

From (4.5) we get

(4.9)Tynp2(1βn)Lf(bto)xnp+2βnLf(bto)2Lf(bto)xnp=2Lf(bto){(1βn)+2βnLf(bto)}xnp

Using (4.5) and (4.9) in (4.4), we get

(4.10)znp(1αn)2Lf(bto)xnp+αn[2Lf(bt0){(1βn)+2βnLf(bto)}xnp]=2Lf(bto)[(1αn)+αn(1βn)+2αnβnLf(bto)]xnp=2Lf(bto)[1αnβn+2αnβnLf(tto)]xnp

Note that 2Lf(bto)[1αnβn+2αnβnLf(tto)]=μn<1 and xnP=Sn. Thus, all conditions of lemma 2.1 are satisfied. Hence, limnxnP=0. This completes the proof of above theorem.□

5. Picard–S hybrid iterative process for nonexpansive mappings

Lemma 5.1.

Let E be a normed space, C a non-empty convex subset of E and T:CC a nonexpansive mapping. If {xn} is the iterative process defined by (1.10), then limnxnTxn exists.

Proof: Set an = xn − Txn for all nN. Then we have

(5.1)an+1=xn+1Txn+1=TznTxn+1znxn+1=(1αn)Txn+αnTynTzn={(1αn)(TxnTzn)}+{αn(TynTzn)}(1αn)TxnTzn+αnTynTzn(1αn)xnzn+αnynzn
(5.2)xnzn=xn{(1αn)Txn+αnTyn}=(xnTxn)+αn(TxnTyn)xnTxn+αnTxnTynxnTxn+αnxnyn=an+αnxnyn

Now,

(5.3)xnyn=xn{(1βn)xn+βnTxn}=xnxn+βnxnβnTxn=βnxnTxn=βnan

From inequality (5.2) and (5.3), we have

(5.4)xnznan+αnβnαn=(1+αnβn)αn

Now,

(5.5)ynzn=yn{(1αn)Txn+αnTyn}=(1αn)yn+αnyn(1αn)TxnαnTyn=(1αn)(ynTxn)+αn(ynTyn)(1αn)ynTxn+αnynTyn

Now,

(5.6)ynTxn=(1βn)xn+βnTxnTxn=(1βn)xn(1βn)Txn(1βn)xnTxn=(1βn)an
(5.7)ynTyn=(1βn)xn+βnTxnTyn=(1βn)xn+βnTxn(1βn+βn)Tyn=(1βn)(xnTyn)+βn(TxnTyn)(1βn)xnTyn+βnTxnTyn=(1βn)xnTyn+βnxnyn

Using (5.3) in (5.7), we get

(5.8)ynTyn(1βn)xnTyn+βnβnan=(1βn)xnTyn+βn2an

Using (5.6) and (5.8) in (5.5), we get

(5.9)ynzn(1αn)(1βn)an+αn{(1βn)xnTyn+βn2an}=(1αn)(1βn)an+αn{(1βn)xnTxn+TxnTyn+βn2an}(1αn)(1βn)an+αn{(1βn)(xnTxn+TxnTyn)+βn2an}(1αn)(1βn)an+αn{((1βn)xnTxn+(1βn)xnyn)+βn2an}=(1αn)(1βn)an+αn{((1βn)an+(1βn)xnyn)+βn2an}

Using (5.3) in (5.9), we get

(5.10)ynzn(1αn)(1βn)an+αn{((1βn)an+(1βn)βnan)+βn2an}=[(1αn)(1βn)+αn(1βn)(1+βn)+αnβn2]an=(1βn+αnβn)an

From (5.1), (5.4) and (5.10), we get

an+1[(1αn)(1+αnβn)]an+[αn(1βn+αnβn)]an=[(1αn)(1+αnβn)+αn(1βn+αnβn)]an=[1+αnβnαnαn2βn+αnαnβn+αn2βn]an=an

So that {an} is nonincreasing and hence, limnan exists.□

Theorem 5.2.

[5] Let X be a Banach space with modulus of convexity δX. Then

(1t)x+ty12t(1t)δX(xy)
for all x,yX with x1,y1 and all t[0,1].

Theorem 5.3.

Let C be a non-empty closed convex (not necessary bounded) subset of a uniformly convex Banach space X and T:CC a nonexpansive mapping. Let {xn} be the sequence defined by (1.10) with the restriction:

limnαnβn(1αn)existsandlimnαnβn(1βn)0

Then, for arbitrary initial value x1C,{xnTxn} converges to some constant γC(T)=inf{xTx:xC}, which is independent of the choice of the initial value x1C.

Proof: Lemma (5.1) implies that limnxnTxn exists and denote γ(x1)=limnxnTxn. Let {xn*} be another iterative sequence generated by (1.10) with the same restriction on parameters {αn} and {βn} of iteration as the sequence {xn} but with the initial value x1*C. It follows from lemma (5.1) that

(5.11)limnxn*Txn*=γ(x1*)

Observe that

(5.12)TynTynynyn(1βn)xnxn+βnTxnTxn(1βn)xnxn+βnxnxnxnxn

Now

(5.13)xn+1xn+1=TznTznznzn=(1αn)(TxnTxn)+αn(TynTyn)(1αn)TxnTxn+αnTynTyn(1αn)xnxn+αnTynTyn

Using (5.12) in (5.13), we have

(5.14)xn+1xn+1(1αn)xnxn+αnxnxn
(5.15)=xnxn*

This shows that limnxnxn* exists.

Let limnxnxn*=d for some d>0.

Let

(5.16)ynyn=(1βn)(xnxn)+βn(TxnTxn)=(1βn)(xnxn)xnxn+βn(TxnTxn)xnxnxnxn
Since
(xnxn*)xnxn*=xnxn*xnxn*=1
(TxnTxn*)xnxn*=TxnTxn*xnxn*xnxn*xnxn*=1

Using theorem (5.2) and (5.16), we obtain that

ynyn*12βn(1βn)δX(xnxn*(TxnTxn*)xnxn*)xnxn*

It follows from (5.14) that

(5.17)xn+1xn+1*(1αn)xnxn*+αnxnxn*[12βn(1βn)δX((xnxn*)(TxnTxn*)xnxn*)]=xnxn*2αnβn(1βn)xnxn*δX((xnxn*)(TxnTxn*)x1x1*)

This gives us

2αnβn(1βn)xnxn*δX((xnxn*)(TxnTxn*)xnxn*)xnxn*xn+1xn+1*

Or

2αnβn(1βn)xnxn*δX((xnxn*)(TxnTxn*)xnxn*)x1x1*

Using restriction limnαnβn(1βn)0 and limnxnxn*=d>0.

Therefore,

limnδX((xnxn*)(TxnTxn*)xnxn*)=0
δX is strictly increasing and continuous and limnxnxn*=d>0.

We have

limn(xnxn*)(TxnTxn*)=0

Observe that

|xnTxnxn*Txn*|(xnTxn)(xn*Txn*)
which implies that
limn|xnTxnxn*Txn*|=0

Thus, γ(x1)=γ(x1*). Because

xn+1Txn+1xnTxnx1Tx1
for all nN and x1C

It follows that

γC(T)=inf{xTx:xC}

Figures

A comparison of Picard–S hybrid with other iterative processes

StepPicard–S hybridPicard–Ishikawa hybridPicard–Mann hybridPicard–Krasnoselskii hybridS-iteration
05.00000000000005.00000000000005.0000000000005.0000000000005.000000000000
12.0536659858292.0536659858292.2512843540732.2512843540732.330713309124
22.0011743103622.0011743103622.0240689690982.0240689690982.042698929425
32.0000249996872.0000249996872.0023366393862.0023366393862.005602850705
42.0000004333322.0000005497602.0002271411582.0002271411582.000738954904
52.0000000094502.0000000120892.0000220828642.0000220828642.000097495596
62.0000000002072.0000000002652.0000021469422.0000021469422.000012863908
72.0000000000002.0000000000052.0000002087302.0000002087302.000001697319
8 2.0000000000002.0000000202932.0000000202932.000000223951
9 2.0000000019732.0000000019732.000000029549
10 2.0000000001912.0000000001912.000000003898
11 2.0000000000182.0000000000182.000000000514
12 2.0000000000022.0000000000022.000000000067
13 2.0000000000002.0000000000002.000000000008
14 2.000000000000

References

[1]Picard E. Memoire surla theorie des equations aux derivees partielles et la methode des approximations successives. J Math Pures Appl. 1890; 6: 145-210.

[2]Krasnoselskii, MA. Two observations about the method of successive approximation. Usp Mat Nauk. 1955; 10: 123-27.

[3]Mann WR. Mean value methods in iteration. Proc Am Math Soc. 1953; 4: 506-70.

[4]Ishikawa S. Fixed points by a new iteration method. Proc Am Math Soc. 1974; 44: 147-50.

[5]Agarwal RP, O'Regan D and Sahu DR. Fixed point theory for lipschitzion-type mappings with applications. New York: Springer Dordrecht Heidelberg London; 2009.

[6]Chidume CE and Olaleru JO. Picard iteration process for a general class of contractive mappings. J Niger Math Soc. 2014; 33: 19-23.

[7]Khan SH and Picard-Mann A. Hybrid iterative process. Fixed Point Theory Appl. 2013; Article number: 69(2013).

[8]Okeke GA and Abbas M. A solution of delay differential equation via Picard-Krasnoselskii hybrid iterative process. Arab J Math. 2017; 6: 21-9. doi: 10.1007/540065-017-0162-8.

[9]Okeke GA. Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications. Afrika Mathematica 2019; 30: 817-35.

[10]Rhoades BE. Comments on two fixed point iteration methods. J Math Anal Appl. 1976; 56(3): 741-50.

[11]Abbas M and Nazir T. A new faster iteration process applied to constrained minimization and feasibility problems. Mat Vesn. 2014; 66(2): 223-34.

[12]Babu GVR and Vara Prasad KNV. Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators. Fixed Point Theory Appl. 2006; 6, 49615.

[13]Berinde V. Picard iteration converges faster than Mann iteration for class of quasi contractive operators. Fixed Point Theory Appl. 2004; 2004, 716359.

[14]Berinde V and Berinde M. The fastest Krasnoselskii iteration for approximating fixed points of strictly pseudo contractive mappings. Carpathian J Math. 2005; 21(1–2): 13-20.

[15]Berinde V and Pacurar M. Empirical study of the rate of convergence of some fixed point iterative methods. Proc Appl Math Mech. 2007; 7, 2030015-16. doi 10.1002/pamm.200700254.

[16]Dogan K and Karakaya V. On the convergence and stability results for a new general iterative process. Sci World J. 2014; 8, 852475.

[17]Gursoy F, Karakaya V and Picard SA. Hybrid type iteration method for solving a differential equation with retarded arguments. arXiv:1403.2546v2 [math FA], 28 April 2014.

[18]Rhoades BE and Xue Z. Comparison of the rate of convergence among Picard, Mann, Ishikawa, and Noor iterations applied to quasicontractive maps. Fixed Point Theory Appl. 2010; 12, 169062.

[19]Xue Z. The comparison of the convergence speed between Picard, Mann, Krasnoselskii and Ishikawa iterations in Banach spaces. Fixed Point Theory Appl. 2008; 5, 387056.

[20]Berinde V. Iterative approximation of fixed points, Baia Mare: Efemeride; 2002.

[21]Zhao HY. Pseudo almost periodic solutions for a class of differential equation with delays depending on state. Adv Nonlinear Anal. 2020; 9: 1251-8.

[22]Sahin A. Some results of the Picard-Krasnoselskii hybrid process. Filomat. 2019; 33(2): 359-65.

[23]Coman GH, Pavel G, Rus I and Rus IA. Introduction in the theory of operational equation, Cluj-Napoca: Ed. Dacia; 1976.

Further reading

[24]Nelson PW, Murray JD and Perelson AS. A model of HIV-1 pathogenesis that includes an intracellular delay, Math Biosci. 2000; 163: 201-15.

[25]Soltuz SM and Otrocol D. Classical results via Mann-Ishikawa iteration. Revue d'Analyse Numerique et de Theorie de I'Approximation. 2007; 36(2): 195-9.

Corresponding author

Julee Srivastava can be contacted at: mathjulee@gmail.com

Related articles