To read this content please select one of the options below:

Efficient transient simulation of interconnect networks

M. Condon (School of Electronic Engineering, Dublin City University, Dublin, Ireland)
E. Dautbegovic (School of Electronic Engineering, Dublin City University, Dublin, Ireland)
C. Brennan (School of Electronic Engineering, Dublin City University, Dublin, Ireland)
367

Abstract

Purpose

To provide an efficient and accurate model for interconnect networks characterised by frequency‐domain scattering or admittance parameters. The parameters are derived from measurements or rigorous full‐wave simulation.

Design/methodology/approach

Initially, Hilbert transform relationships are enforced to ensure causality. A reverse Fourier series representation of the discrete data is then converted to the z‐domain and from this a state‐space formulation is determined. This enables the application of a judiciously chosen model reduction algorithm to obtain an efficient time‐domain representation of the network.

Findings

Sample results from both simulated and measured data indicate the efficacy of the proposed modelling strategy. For successful implementation of the strategy, it is necessary to employ the Hilbert transform to ensure that a causal impulse response is obtained.

Practical implications

The method is applicable to the interconnect networks for which the analytical models cannot be obtained due to the complexity and inhomogeneity of the geometries involved.

Originality/value

The work combines in a novel manner aspects from several existing techniques proposed for network simulation and model reduction. The end result is a highly efficient causal, stable and passive representation of the network in question for implementation in a time‐domain circuit simulator.

Keywords

Citation

Condon, M., Dautbegovic, E. and Brennan, C. (2005), "Efficient transient simulation of interconnect networks", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 24 No. 4, pp. 1230-1240. https://doi.org/10.1108/03321640510615571

Publisher

:

Emerald Group Publishing Limited

Copyright © 2005, Emerald Group Publishing Limited

Related articles