research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Stabilization of an elusive tautomer by metal coordination

crossmark logo

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
*Correspondence e-mail: roberto.centore@unina.it

Edited by D. R. Turner, University of Monash, Australia (Received 27 April 2021; accepted 16 June 2021; online 22 June 2021)

The solid-state isolation of the different tautomers of a chemical com­pound can be a challenging problem. In many cases, tautomers with an energy very close to the most stable one cannot be isolated (elusive tautomers). In this article, with reference to the 4-methyl-7-(pyrazin-2-yl)-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole ligand, for which the elusive 3H-tautomer has an energy only 1.4 kcal mol−1 greater than the most stable 2H form, we show that metal com­plexation is a suc­cessful and reliable way for stabilizing the elusive tauto­mer. We have pre­pared two com­plexes of the neutral ligand with CuBr2 and ZnBr2, namely, aqua­bromido­bis­[4-methyl-7-(pyrazin-2-yl)-3H-[1,2,4]triazolo[3,2-c][1,2,4]triazole]copper(II) bromide trihydrate, [CuBr(C8H7N7)2(H2O)]Br·3H2O, and di­bro­mido­[4-methyl-7-(pyrazin-2-yl)-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole][4-methyl-7-(pyrazin-2-yl)-3H-[1,2,4]triazolo[3,2-c][1,2,4]tri­azole]zinc(II) monohydrate, [ZnBr2(C8H7N7)2]·H2O. The X-ray analysis shows that, in both cases, the elusive 3H-tautomer is present. The results of the crystallographic analysis of the two com­plexes reflect the different coordination preferences of CuII and ZnII. The copper(II) com­plex is homotautomeric as it only con­tains the elusive 3H-tautomer of the ligand. The com­plex can be described as octa­hedral with tetra­gonal distortion. Two 3H-triazolotriazole ligands are bis-chelated in the equatorial plane, while a water mol­ecule and a bromide ion in elongated axial positions com­plete the coordination environment. The zinc(II) com­plex, on the other hand, is heterotautomeric and con­tains two bromide ions and two monodentate ligand mol­ecules, one in the 2H-tautomeric form and the other in the 3H-tautomeric form, both coordinated to the metal in tetra­hedral geometry. The observation of mixed-tautomer com­plexes is unprecedented for neutral ligands. The analysis of the X-ray mol­ecular structures of the two com­plexes allows the deduction of possible rules for a rational design of mixed-tautomer com­plexes.

1. Introduction

Tautomers are structural isomers in ready equilibrium between each other (McNaught & Wilkinson, 1997[McNaught, A. D. & Wilkinson, A. (1997). In IUPAC Compendium of Chemical Terminology, 2nd ed. Oxford: Blackwell Science.]). They are intriguing chemical systems that, in a certain sense, can be considered as `living mol­ecules'. In fact, because of the equilibrium they undergo, the relative amounts of the different forms in solution can be altered by physical or chemical factors (temperature, solvent, pH, metal ions, etc.) through the laws of chemical equilibrium. Tautomers have been central in chemistry since the early work of Berzelius on cyanic and cyanuric acids in 1832, and the discovery of keto–enol tautomerism by Erlenmeyer in 1880 (Taylor et al., 2014[Taylor, P. J., Van der Zwan, G. & Antonov, L. (2014). In Tautomerism: Methods and Theories. Weinheim: Wiley-VCH Verlag GmbH & Co.]). The issue of tautomerism has been fundamental in many turning points of research in chemistry. For instance, it was fundamental in the discovery of the structure of DNA by Watson & Crick (1953a[Watson, J. D. & Crick, F. H. (1953a). Nature, 171, 737-738.]), which relies on the keto-tautomeric forms of purine and pyrimidine bases, and in their seminal hypothesis (Watson & Crick, 1953b[Watson, J. D. & Crick, F. H. (1953b). Nature, 171, 964-967.]) that noncanonical tautomeric forms of the bases could be involved in mutagenesis (Goodman, 1995[Goodman, M. (1995). Nature, 378, 237-238.]; Wang et al., 2011[Wang, W., Hellinga, W. & Beese, L. S. (2011). Proc. Natl Acad. Sci. USA, 108, 17644-17648.]). Now the relevance of tautomers is increasingly recognized in many fields of applied chemistry, including drug design (Martin, 2009[Martin, C. Y. (2009). J. Comput. Aided Mol. Des. 23, 693-704.]) and materials chemistry (Bussetti et al., 2014[Bussetti, G., Campione, M., Riva, M., Picone, A., Raimondo, L., Ferraro, L., Hogan, C., Palummo, M., Brambilla, A., Finazzi, M., Duò, L., Sassella, A. & Ciccacci, F. (2014). Adv. Funct. Mater. 24, 958-963.]; Horiuchi et al., 2017[Horiuchi, S., Kobayashi, K., Kumai, R. & Ishibashi, S. (2017). Nat. Commun. 8, 14426.]). In the realm of coordination chemistry, tautomerism can also be a relevant issue, because some classes of ligands show tautomerism. As an example, keto–enol tautomerism is shown in amino–naphthol derivatives (Deneva et al., 2019[Deneva, V., Dobrikov, G., Crochet, A., Nedeltcheva, D., Fromm, K. M. & Antonov, L. (2019). J. Org. Chem. 15, 1898-1906.]), in di­hydroxy­quinolines (Todorov et al., 2012[Todorov, A. R., Nieger, M. & Helaja, J. (2012). Chem. Eur. J. 18, 7269-7277.]) and in aroylhydrazine ligands (Borbone et al., 2004[Borbone, F., Caruso, U., Centore, R., DeMaria, A., Fort, A., Fusco, M., Panunzi, B., Roviello, A. & Tuzi, A. (2004). Eur. J. Inorg. Chem. 2004, 2467-2476.]), while thione–thiol tautomerism is present in di­thio­carbazate ligands (Takjoo & Centore, 2013[Takjoo, R. & Centore, R. (2013). J. Mol. Struct. 1031, 180-185.]). In most of these cases, the common feature is that only one tautomeric form acts as the ligand and is found in the com­plexes.

In the realm of fused-ring heteroaromatic systems that we have studied over the years (Centore et al., 1996[Centore, R., Panunzi, B., Roviello, A., Sirigu, A. & Villano, P. (1996). J. Polym. Sci. A Polym. Chem. 34, 3203-3211.], 1999[Centore, R., Concilio, S., Panunzi, B., Sirigu, A. & Tirelli, N. (1999). J. Polym. Sci. A Polym. Chem. 37, 603-608.]; Ambrosanio et al., 1999[Ambrosanio, P., Centore, R., Concilio, S., Panunzi, B., Sirigu, A. & Tirelli, N. (1999). Polymer, 40, 4923-4928.]), we have found in [1,2,4]triazolo[3,2-c][1,2,4]triazole a heterocyclic system with a rich tautomeric behaviour (Centore et al., 2013[Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. 2013, 3721-3728.], 2015[Centore, R., Manfredi, C., Fusco, S., Maglione, C., Carella, A., Capobianco, A., Peluso, A., Colonna, D. & Di Carlo, A. (2015). J. Mol. Struct. 1093, 119-124.], 2017[Centore, R., Manfredi, C., Capobianco, A., Volino, S., Ferrara, M. V., Carella, A., Fusco, S. & Peluso, A. (2017). J. Org. Chem. 82, 5155-5161.]; Fusco et al., 2018[Fusco, S., Parisi, E., Carella, A., Capobianco, A., Peluso, A., Manfredi, C., Borbone, F. & Centore, R. (2018). Cryst. Growth Des. 18, 6293-6301.]).

We have found that the relative energy of the three tautomers of the neutral mol­ecule (Fig. 1[link]) can be significantly modulated by acting on the electronic character of the substituents and on the polarity of the solvent. In all the cases investigated, the energy trend of the tautomers is E(2H) < E(3H) << E(5H); in particular, while the predicted energy of the 5H-tautomer is always prohibitive (+10.8 kcal mol−1 with respect to the 2H-tautomer, in the most favourable case) (Centore et al., 2015[Centore, R., Manfredi, C., Fusco, S., Maglione, C., Carella, A., Capobianco, A., Peluso, A., Colonna, D. & Di Carlo, A. (2015). J. Mol. Struct. 1093, 119-124.]), the calculated energy of the 3H-tautomer, in some cases, is greater than for the 2H-tautomer by only 1 kcal mol−1 or less (Centore et al., 2015[Centore, R., Manfredi, C., Fusco, S., Maglione, C., Carella, A., Capobianco, A., Peluso, A., Colonna, D. & Di Carlo, A. (2015). J. Mol. Struct. 1093, 119-124.]). Despite this, the 3H-tautomer should be considered elusive, because it has not yet been observed in the solid state for any of the pure triazolotriazole com­pounds studied so far.

[Figure 1]
Figure 1
Relevant chemical diagrams for the [1,2,4]triazolo[3,2-c][1,2,4]triazole system: the three tautomers of the neutral form (the adopted atom numbering of the heterobicycle is indicated only for the 2H-tautomer).

We have recently described a new versatile nitro­gen-rich tri­azolotriazole ligand, 4-methyl-7-(pyrazin-2-yl)-2H,3H-[1,2,4]triazolo[3,2-c][1,2,4]triazole, henceforth TT9 (Fig. 2[link]a), whose tautomeric behaviour is further enriched by the possibility of metal coordination (Parisi et al., 2020[Parisi, E., Capasso, D., Capobianco, A., Peluso, A., Di Gaetano, S., Fusco, S., Manfredi, C., Mozzillo, R., Pinto, G. & Centore, R. (2020). Dalton Trans. 49, 14452-14462.]).

[Figure 2]
Figure 2
(a) Chemical diagram of the triazolotriazole ligand TT9 discussed in this article (the 2H-tautomer is shown). (b) The chemical formulae of the com­plexes studied in this article.

In particular, while crystallization of the pure neutral ligand yielded the most stable 2H-tautomer, as expected, crystallization of neutral TT9 in the presence of ZnII and CuII salts yielded metal com­plexes of the neutral ligand, with a 1:1 metal-to-ligand ratio, in which the 3H-tautomer is present (Parisi et al., 2020[Parisi, E., Capasso, D., Capobianco, A., Peluso, A., Di Gaetano, S., Fusco, S., Manfredi, C., Mozzillo, R., Pinto, G. & Centore, R. (2020). Dalton Trans. 49, 14452-14462.]). In order to further confirm metal com­plexation as a way of stabilizing the elusive 3H-tautomer, we report, in this article, structural data for the ZnII and CuII com­plexes of TT9, with a 1:2 metal-to-ligand ratio (Fig. 2[link]b).

2. Experimental

All reagents were of analytical grade and were used without further purification.

2.1. Synthesis and crystallization

The synthesis of the TT9 ligand was performed according to the procedure already described by us (Parisi et al., 2020[Parisi, E., Capasso, D., Capobianco, A., Peluso, A., Di Gaetano, S., Fusco, S., Manfredi, C., Mozzillo, R., Pinto, G. & Centore, R. (2020). Dalton Trans. 49, 14452-14462.]). Prismatic green crystals of the com­plex Cu(TT9)2Br2·3H2O, henceforth com­plex 1, were grown in 2 d by slow evaporation of a clear 50:50 (v/v) water–ethanol solution con­taining a 1:2 molar ratio of CuBr2 dihydrate (13.0 mg, 7.63 × 10−5 mol) and TT9 (31.0 mg, 1.56 × 10−4 mol) at room temperature in a qu­anti­tative yield (53.0 mg). Prismatic brown crystals of the com­plex Zn(TT9)2Br2·H2O, henceforth com­plex 2, were grown in a week by slow evaporation of a 50:50 (v/v) water–ethanol solution con­taining a 1:2 molar ratio of ZnBr2 (14 mg, 0.1 mmol) and TT9 (40 mg, 0.2 mmol) at room temperature in a 75% yield (48 mg).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms bonded to C atoms were generated stereochemically and refined by the riding model. After having placed C-bound H atoms, those bonded to O and N atoms, that are essential in the identification of tautomers, were clearly found in difference Fourier maps as the first maxima and, in some cases, their coordinates were refined. For all H atoms, Uiso(H) = 1.2Ueq of the carrier atom was assumed (1.5 in the case of methyl groups). The structure of com­plex 1, in the noncentrosymmetric space group Cc, was refined as a two-com­ponent inversion twin.

Table 1
Experimental details

Experiments were carried out with Mo Kα radiation using a Bruker–Nonius KappaCCD diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H atoms were treated by a mixture of independent and constrained refinement.

  1 2
Crystal data
Chemical formula [CuBr(C8H7N7)2(H2O)]Br·3H2O [ZnBr2(C8H7N7)2]·H2O
Mr 697.83 645.62
Crystal system, space group Monoclinic, Cc Triclinic, P[\overline{1}]
Temperature (K) 173 293
a, b, c (Å) 11.062 (4), 8.369 (3), 27.406 (6) 8.396 (2), 12.305 (3), 12.724 (3)
α, β, γ (°) 90, 92.44 (3), 90 112.53 (2), 107.78 (3), 92.16 (2)
V3) 2534.9 (14) 1138.1 (5)
Z 4 2
μ (mm−1) 4.07 4.63
Crystal size (mm) 0.50 × 0.20 × 0.20 0.40 × 0.30 × 0.20
 
Data collection
Tmin, Tmax 0.250, 0.478 0.270, 0.433
No. of measured, independent and observed [I > 2σ(I)] reflections 8682, 4870, 4563 12306, 5090, 3636
Rint 0.036 0.042
(sin θ/λ)max−1) 0.651 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.04 0.047, 0.136, 1.09
No. of reflections 4870 5090
No. of parameters 367 315
No. of restraints 13 2
Δρmax, Δρmin (e Å−3) 0.60, −0.86 0.70, −0.74
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.502 (12)
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

The X-ray mol­ecular structure of com­plex 1 is shown in Fig. 3[link]. Two 3H-tautomeric s–cis TT9 neutral ligands are coordinated to copper(II) as bidentate chelates (N1 and N6) in a square-planar arrangement, with the formation of penta­tomic chelate rings. The four metal-to-ligand distances in the equatorial plane show a clear and significant asymmetry. In fact, the bond lengths with N-pyrazinic donors [Cu—N6A = 2.117 (5) and Cu—N6B = 2.125 (5) Å] are longer than with N-triazole donors [Cu—N1A = 1.953 (5) and Cu—N1B = 1.951 (5) Å]. This presumably reflects the fact that the pyrazine N atom is a poorer donor. One water mol­ecule and one bromide ion com­plete the coordination environment of CuII, with trans-elongated bond lengths of Cu—O = 2.410 (5) and Cu—Br = 2.7466 (12) Å. The coordination geometry can be described as octa­hedral with tetra­gonal distortion. The observed coordination geometry is typical of CuII and can be related to Jahn–Teller distortions (Cotton et al., 1999[Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. (1999). In Advanced Inorganic Chemistry, 6th ed. New York: John Wiley & Sons Inc.]).

[Figure 3]
Figure 3
The mol­ecular structure of com­plex 1, with displacement ellipsoids drawn at the 30% probability level. Selected hydrogen bonds are indicated by dashed lines.

The selection of the 3H-tautomer, in com­plex 1, is probably related to the strong preference of CuII for square-planar coordination with N-donor atoms. The formation of penta­tomic (N1 and N6) chelate rings drives the selection of the s–cis conformer and the switching of the proton from N2 to N3. In fact, in the observed mol­ecular structure, there are close intra­molecular con­tacts (weak hydrogen bonds) C2A—H2A⋯N2B and C4B—H4B⋯N2A (Table 2[link]). Three uncoordinated water mol­ecules and a bromide ion are also present in the crystallographically independent unit. They are involved in strong hydrogen bonds with the N—H donors and N-atom acceptors present on the rim of the coordinated ligands (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 1

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯N2B 0.95 2.38 3.137 (8) 137
C3A—H3A⋯Br1i 0.95 3.11 4.058 (6) 173
N3A—H3NA⋯O2 0.86 (3) 1.82 (3) 2.657 (7) 165 (7)
C4B—H4B⋯N2A 0.95 2.52 3.276 (8) 136
C4B—H4B⋯Br1ii 0.95 3.09 3.848 (6) 138
N3B—H3NB⋯Br2 0.85 (3) 2.34 (3) 3.190 (5) 173 (7)
O1—H1W⋯Br1iii 0.83 (3) 2.42 (3) 3.229 (5) 166 (6)
O1—H2W⋯Br2ii 0.83 (3) 2.49 (3) 3.301 (5) 168 (8)
O2—H3W⋯Br1ii 0.82 (3) 2.43 (3) 3.237 (5) 173 (9)
O2—H4W⋯O3iv 0.81 (3) 1.89 (4) 2.691 (7) 167 (10)
O3—H5W⋯O4v 0.79 (3) 2.08 (6) 2.746 (7) 141 (8)
O3—H6W⋯N7A 0.80 (3) 2.17 (4) 2.931 (7) 159 (9)
O4—H7W⋯N7B 0.83 (3) 2.12 (3) 2.939 (7) 171 (9)
O4—H8W⋯Br2iv 0.81 (3) 2.56 (6) 3.272 (6) 147 (8)
Symmetry codes: (i) [x, y-1, z]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (v) [x, -y+1, z+{\script{1\over 2}}].

The X-ray mol­ecular structure of com­plex 2, shown in Fig. 4[link], has com­pletely different features. The coordination around ZnII is basically tetra­hedral and is accom­plished through two bromide ions [Zn—Br1 2.4017 (11) and Zn—Br2 2.3581 (9) Å] and two TT9 ligands acting in a monodentate manner [Zn—N3A = 2.059 (4) and Zn—N2B = 2.018 (4) Å]. The two TT9 ligands are present in different tautomer/conformers. Ligand A is 2H-tautomeric s–trans, whereas ligand B is 3H-tautomeric s–cis. In the com­plex, the two ligands are hydrogen bonded to each other through a strong bifurcated hydrogen bond, N2A—H2NA⋯N1B and N2A—H2NA⋯N6B (Table 3[link]). Examples of com­plexes in which two different tautomeric forms of the same ligand are coordinated to the same metal centre are rare for anionic ligands (Sutradhar et al., 2016[Sutradhar, M., Alegria, E. C. B. A., Mahmudov, T., Guedes da Silva, F. C. & Pombeiro, A. J. L. (2016). RSC Adv., 6, 8079-8088.]), and, to the best of our knowledge, not previously documented for neutral ligands.

Table 3
Hydrogen-bond geometry (Å, °) for 2

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯Br1i 0.93 3.13 3.995 (6) 155
N2A—H2NA⋯N1B 0.84 (2) 2.09 (4) 2.786 (6) 139 (5)
N2A—H2NA⋯N6B 0.84 (2) 2.39 (4) 3.126 (6) 145 (5)
C2B—H2B⋯N4B 0.93 2.62 3.276 (7) 129
C4B—H4B⋯Br1i 0.93 2.86 3.791 (6) 176
N3B—H3NB⋯O1W 0.85 (2) 1.85 (3) 2.669 (6) 163 (6)
O1W—H1W⋯Br1ii 1.03 2.39 3.375 (6) 162
O1W—H2W⋯N7Aiii 0.98 2.03 2.901 (7) 148
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [x-1, y+1, z].
[Figure 4]
Figure 4
The mol­ecular structure of com­plex 2, with displacement ellipsoids drawn at the 30% probability level. Selected hydrogen bonds are indicated by dashed lines.

A deep inspection of the structure of com­plex 2 can suggest some basic points for the rational design of such mixed-tautomeric-ligand com­plexes. The two tautomeric forms should have similar ligand-donor capability and similar energy, in such a way that both are present in solution in similar amounts. They should possess com­plementary functional groups to form stable adducts by secondary inter­actions (e.g. hydrogen bonds), with a strong preference for mixed adducts. Finally, the mixed hydrogen-bonded adduct should be featured with a pocket, suitable for the dimensions and presence of donor atoms, to bind a metal ion. The fulfilment of all these issues may account for the rarity of the phenomenon.

The tautomeric/conformational variability of the TT9 ligand, which possesses four different tautomers/conformers within a narrow energy range ΔE < 2 kcal mol−1 (Parisi et al., 2020[Parisi, E., Capasso, D., Capobianco, A., Peluso, A., Di Gaetano, S., Fusco, S., Manfredi, C., Mozzillo, R., Pinto, G. & Centore, R. (2020). Dalton Trans. 49, 14452-14462.]), makes TT9 a reliable candidate for this target. In fact, we have considered the formation of hydrogen-bonded dimers for the four lowest-energy tautomers/conformers of TT9, shown in Fig. 5[link] (Parisi et al., 2020[Parisi, E., Capasso, D., Capobianco, A., Peluso, A., Di Gaetano, S., Fusco, S., Manfredi, C., Mozzillo, R., Pinto, G. & Centore, R. (2020). Dalton Trans. 49, 14452-14462.]). Our analysis showed that, of the ten possible combinations, only in four cases can hydrogen-bonded dimers be formed, and they are shown in Fig. 6[link]. In all the dimers, a strong (bifurcated) hydrogen bond is present between the N—H donor of a tautomer and the two s–cis N-acceptor atoms of the other. The hydrogen-bonded dimers also show a pocket with two N-donor atoms that could host a metal ion, for instance, in tetra­hedral coordination geometry. Of the four possible dimers, two are homotautomeric and con­tain the higher-energy 3H-tautomer, while the other two are heterotautomeric and con­tain both 2H- and 3H-tautomers. Evidently, the two latter, 2H s–trans/3H s–cis and 2H s–cis/3H s–cis, are energetically more feasible and their energies should be very close, within 0.1 kcal mol−1. Thus, our analysis confirms that the formation of mixed-tautomer com­plexes can be expected with TT9.

[Figure 5]
Figure 5
Low-energy tautomers/conformers of TT9. Relative energies are taken from Parisi et al. (2020[Parisi, E., Capasso, D., Capobianco, A., Peluso, A., Di Gaetano, S., Fusco, S., Manfredi, C., Mozzillo, R., Pinto, G. & Centore, R. (2020). Dalton Trans. 49, 14452-14462.]) and are evaluated in water as the con­tinuum polarizable medium.
[Figure 6]
Figure 6
Hydrogen-bonded dimers of neutral TT9. The presence of a metal atom M in a tetra­hedral coordination is also outlined. Highlighted in blue is the dimer found in com­plex 2.

3.1. Supra­molecular features

The crystal packing of both com­plexes is basically driven by the formation of a network of strong hydrogen bonds involving N—H donors and N-atom acceptors of the ligand mol­ecules, the bromide ions and the water mol­ecules (see Tables 2[link] and 3[link]).

The equatorial plane of com­plex 1 is neither perpendicular nor parallel to the unique b axis. Therefore, in the crystal, mol­ecules with two different orientations are present. The most remarkable supra­molecular architecture is represented by hydrogen-bonded chains running along ab and a+b (Fig. 7[link]); these directions are equivalent by symmetry in the monoclinic system through the c-glide operation perpendicular to the unique b axis. The chains are formed by hydrogen bonding between water donors and bromide acceptors axially coordinated to the metal in consecutive com­plex mol­ecules along the chains. Different chains are held together laterally by hydrogen bonds involving noncoordinated water mol­ecules.

[Figure 7]
Figure 7
Partial crystal packing of com­plex 1. Selected hydrogen bonds are indicated by dashed lines.

In com­plex 2, an intra­molecular bifurcated hydrogen-bonding inter­action is present between the N2A—H2NA donor group and the N1B and N6B acceptors of the two coordinated ligands. The most remarkable supra­molecular architecture is represented by nearly planar hydrogen-bonded ribbons of mol­ecules, running along ab. The ribbons con­tain 2H-tautomeric s–trans and 3H-tautomeric s–cis ligand mol­ecules inter­calated by water mol­ecules (Fig. 8[link]).

[Figure 8]
Figure 8
Partial crystal packing of com­plex 2. Selected hydrogen bonds are indicated by dashed lines.

4. Conclusions

Nitro­gen-rich ligand TT9, i.e. 4-methyl-7-(pyrazin-2-yl)-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole, has a low-energy 3H-tauto­mer. While crystallization of pure TT9 from different solvents only affords the most stable 2H-tautomer, we have proven that metal coordination allows selection of the elusive 3H-tautomer. Depending on the stoichiometry of the com­plex, and on the metal, com­plexes with only the 3H-tautomeric ligand (homotautomeric), or com­plexes with mixed-tautomer ligands, i.e. both 2H and 3H (heterotautomeric), can be obtained.

Steering and selectively con­trolling the formation of the different energetically feasible tautomers of a given com­pound, depending on the physico-chemical environment, is of practical and theoretical relevance. In fact, different tautomers generally inter­act differently with the same substrate and show different properties: in an analogy with language, they have different `meaning'. After all, chemistry can be considered a language: atoms are its letters and mol­ecules its words. Continuing with this analogy, tautomers, and more generally isomers, would correspond to the anagrams of ordinary language. In this analogy, the heterotautomeric com­plex 2 would correspond to a sentence con­taining two anagrams of the same word, e.g. `she married an admirer'.

This is uncommon also in ordinary language.

Supporting information


Computing details top

For both structures, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

Aquabromidobis[4-methyl-7-(pyrazin-2-yl)-3H-[1,2,4]triazolo[3,2-c][1,2,4]triazole]copper(II) bromide trihydrate (1) top
Crystal data top
[CuBr(C8H7N7)2(H2O)]Br·3H2OF(000) = 1388
Mr = 697.83Dx = 1.829 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 11.062 (4) ÅCell parameters from 320 reflections
b = 8.369 (3) Åθ = 3.3–28.5°
c = 27.406 (6) ŵ = 4.07 mm1
β = 92.44 (3)°T = 173 K
V = 2534.9 (14) Å3Prismatic, green
Z = 40.50 × 0.20 × 0.20 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4870 independent reflections
Radiation source: normal-focus sealed tube4563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 3.1°
CCD rotation images, thick slices scansh = 1314
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1010
Tmin = 0.250, Tmax = 0.478l = 3535
8682 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0413P)2 + 2.1083P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4870 reflectionsΔρmax = 0.60 e Å3
367 parametersΔρmin = 0.86 e Å3
13 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.502 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Data were collected on a Bruker-Nonius KappaCCD diffractometer equipped with Oxford Cryostream 700 apparatus. The structures were solved by direct methods and refined by the full matrix least squares method with anisotropic displacement parameters for non-H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.2108 (5)0.3482 (7)0.1008 (2)0.0171 (11)
C2A0.0988 (5)0.1833 (7)0.0494 (2)0.0203 (12)
H2A0.0555500.1633750.0193470.024*
C3A0.1070 (6)0.0641 (7)0.0854 (2)0.0233 (12)
H3A0.0700520.0364840.0787590.028*
C4A0.2180 (6)0.2281 (7)0.1359 (2)0.0218 (12)
H4A0.2619240.2471060.1658620.026*
C5A0.2645 (5)0.5042 (7)0.1058 (2)0.0164 (11)
C6A0.3529 (5)0.7240 (7)0.1263 (2)0.0177 (11)
C7A0.4323 (6)0.6809 (8)0.1994 (2)0.0227 (12)
C8A0.5012 (7)0.7127 (9)0.2462 (2)0.0322 (15)
H8A0.4489250.7679070.2687700.048*
H8B0.5715260.7798210.2400180.048*
H8C0.5286250.6112490.2607430.048*
N1A0.2503 (5)0.6096 (6)0.07033 (17)0.0184 (10)
N2A0.3066 (5)0.7527 (6)0.08205 (18)0.0195 (10)
N3A0.4212 (5)0.7944 (6)0.16306 (18)0.0195 (10)
H3NA0.461 (6)0.882 (5)0.162 (3)0.023*
N4A0.3787 (5)0.5451 (6)0.18878 (17)0.0219 (10)
N5A0.3309 (4)0.5749 (6)0.14234 (16)0.0160 (9)
N6A0.1518 (4)0.3249 (5)0.05743 (18)0.0180 (10)
N7A0.1644 (5)0.0863 (6)0.12843 (18)0.0226 (11)
C1B0.1316 (5)0.6931 (7)0.0809 (2)0.0184 (11)
C2B0.1366 (6)0.7999 (7)0.1188 (2)0.0212 (12)
H2B0.1019960.7715510.1499400.025*
C3B0.2360 (6)0.9747 (8)0.0686 (2)0.0252 (13)
H3B0.2724021.0761430.0628600.030*
C4B0.2340 (6)0.8649 (7)0.0299 (2)0.0214 (12)
H4B0.2708750.8915930.0009380.026*
C5B0.0785 (6)0.5357 (7)0.0844 (2)0.0190 (12)
C6B0.0024 (5)0.3091 (7)0.1041 (2)0.0191 (11)
C7B0.0630 (6)0.3334 (7)0.1805 (2)0.0236 (12)
C8B0.1181 (7)0.2884 (9)0.2287 (2)0.0335 (16)
H8D0.1238000.3829440.2497440.050*
H8E0.1992770.2449610.2244330.050*
H8F0.0678140.2073520.2437940.050*
N1B0.0837 (4)0.4380 (6)0.04658 (18)0.0191 (10)
N2B0.0320 (5)0.2912 (6)0.05801 (18)0.0209 (10)
N3B0.0583 (5)0.2296 (6)0.14155 (18)0.0214 (10)
H3NB0.088 (6)0.137 (5)0.137 (3)0.026*
N4B0.0137 (5)0.4731 (6)0.17061 (17)0.0206 (11)
N5B0.0225 (4)0.4554 (6)0.12167 (17)0.0182 (10)
N6B0.1811 (4)0.7247 (6)0.03631 (17)0.0160 (9)
N7B0.1890 (5)0.9421 (6)0.1129 (2)0.0267 (12)
O10.3589 (5)0.4611 (5)0.01555 (18)0.0310 (10)
H1W0.381 (8)0.372 (5)0.005 (2)0.037*
H2W0.362 (7)0.449 (8)0.0455 (10)0.037*
O20.5055 (6)1.0913 (6)0.15962 (18)0.0420 (13)
H3W0.492 (9)1.114 (11)0.1310 (13)0.050*
H4W0.543 (8)1.161 (8)0.174 (3)0.050*
O30.1544 (5)0.1814 (5)0.19710 (16)0.0298 (11)
H5W0.136 (8)0.139 (8)0.2215 (19)0.036*
H6W0.176 (8)0.108 (7)0.181 (3)0.036*
O40.1829 (6)1.1261 (6)0.20431 (19)0.0400 (13)
H7W0.177 (9)1.080 (10)0.1778 (18)0.048*
H8W0.229 (6)1.200 (7)0.199 (3)0.048*
Br10.05312 (4)0.64638 (7)0.04411 (2)0.02344 (15)
Br20.16760 (5)0.12171 (7)0.13330 (2)0.03047 (17)
Cu0.16163 (6)0.52924 (8)0.01225 (3)0.01672 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.019 (3)0.016 (3)0.016 (2)0.003 (2)0.001 (2)0.001 (2)
C2A0.020 (3)0.016 (3)0.025 (3)0.001 (2)0.000 (2)0.001 (2)
C3A0.027 (3)0.018 (3)0.026 (3)0.003 (2)0.004 (2)0.001 (2)
C4A0.023 (3)0.023 (3)0.019 (3)0.001 (2)0.001 (2)0.005 (2)
C5A0.016 (3)0.018 (3)0.014 (2)0.001 (2)0.004 (2)0.001 (2)
C6A0.017 (3)0.015 (3)0.021 (3)0.001 (2)0.001 (2)0.000 (2)
C7A0.022 (3)0.028 (3)0.018 (2)0.003 (3)0.001 (2)0.001 (2)
C8A0.039 (4)0.034 (4)0.022 (3)0.002 (3)0.011 (3)0.005 (3)
N1A0.020 (3)0.015 (2)0.020 (2)0.0028 (19)0.001 (2)0.0004 (18)
N2A0.023 (3)0.014 (2)0.021 (2)0.007 (2)0.005 (2)0.0019 (19)
N3A0.021 (3)0.019 (3)0.018 (2)0.000 (2)0.005 (2)0.0017 (19)
N4A0.026 (3)0.024 (3)0.015 (2)0.001 (2)0.004 (2)0.0015 (19)
N5A0.018 (2)0.013 (2)0.016 (2)0.0007 (18)0.0020 (19)0.0007 (17)
N6A0.019 (2)0.015 (2)0.021 (2)0.0009 (19)0.0037 (19)0.0017 (18)
N7A0.028 (3)0.015 (2)0.025 (2)0.001 (2)0.001 (2)0.0028 (19)
C1B0.016 (3)0.018 (3)0.021 (2)0.004 (2)0.003 (2)0.002 (2)
C2B0.026 (3)0.019 (3)0.018 (3)0.002 (2)0.004 (2)0.002 (2)
C3B0.023 (3)0.023 (3)0.029 (3)0.001 (2)0.004 (3)0.002 (3)
C4B0.021 (3)0.023 (3)0.020 (3)0.001 (2)0.003 (2)0.000 (2)
C5B0.023 (3)0.017 (3)0.017 (2)0.001 (2)0.003 (2)0.003 (2)
C6B0.020 (3)0.016 (3)0.022 (3)0.001 (2)0.002 (2)0.001 (2)
C7B0.025 (3)0.025 (3)0.020 (3)0.003 (3)0.002 (2)0.001 (2)
C8B0.043 (4)0.033 (4)0.024 (3)0.004 (3)0.005 (3)0.007 (3)
N1B0.021 (3)0.018 (2)0.018 (2)0.0035 (19)0.0010 (19)0.0033 (19)
N2B0.025 (3)0.017 (2)0.020 (2)0.005 (2)0.005 (2)0.0017 (19)
N3B0.024 (3)0.018 (3)0.022 (2)0.003 (2)0.007 (2)0.0026 (19)
N4B0.026 (3)0.022 (3)0.014 (2)0.000 (2)0.004 (2)0.0011 (19)
N5B0.019 (2)0.019 (3)0.016 (2)0.0033 (19)0.0054 (19)0.0015 (18)
N6B0.016 (2)0.015 (2)0.017 (2)0.0018 (18)0.0029 (19)0.0031 (17)
N7B0.028 (3)0.022 (3)0.030 (3)0.000 (2)0.001 (2)0.006 (2)
O10.038 (3)0.024 (2)0.031 (2)0.008 (2)0.003 (2)0.0046 (19)
O20.068 (4)0.032 (3)0.026 (2)0.023 (3)0.006 (3)0.002 (2)
O30.041 (3)0.022 (2)0.027 (3)0.006 (2)0.002 (2)0.0006 (18)
O40.057 (4)0.035 (3)0.026 (2)0.013 (3)0.009 (3)0.005 (2)
Br10.0212 (3)0.0251 (3)0.0239 (3)0.0039 (2)0.0000 (2)0.0014 (2)
Br20.0303 (4)0.0254 (3)0.0363 (3)0.0067 (3)0.0068 (3)0.0072 (3)
Cu0.0210 (3)0.0142 (3)0.0144 (3)0.0030 (3)0.0043 (2)0.0018 (3)
Geometric parameters (Å, º) top
C1A—N6A1.346 (8)C3B—N7B1.329 (9)
C1A—C4A1.391 (8)C3B—C4B1.403 (9)
C1A—C5A1.438 (8)C3B—H3B0.9500
C2A—N6A1.336 (7)C4B—N6B1.320 (8)
C2A—C3A1.404 (9)C4B—H4B0.9500
C2A—H2A0.9500C5B—N1B1.320 (7)
C3A—N7A1.328 (8)C5B—N5B1.350 (8)
C3A—H3A0.9500C6B—N2B1.311 (8)
C4A—N7A1.338 (8)C6B—N5B1.349 (7)
C4A—H4A0.9500C6B—N3B1.352 (8)
C5A—N1A1.317 (7)C7B—N4B1.313 (8)
C5A—N5A1.353 (7)C7B—N3B1.376 (8)
C6A—N2A1.317 (8)C7B—C8B1.480 (9)
C6A—N5A1.349 (7)C8B—H8D0.9800
C6A—N3A1.368 (8)C8B—H8E0.9800
C7A—N4A1.310 (8)C8B—H8F0.9800
C7A—N3A1.378 (8)N1B—N2B1.385 (7)
C7A—C8A1.489 (8)N1B—Cu1.951 (5)
C8A—H8A0.9800N3B—H3NB0.85 (3)
C8A—H8B0.9800N4B—N5B1.391 (6)
C8A—H8C0.9800N6B—Cu2.125 (5)
N1A—N2A1.382 (7)O1—Cu2.410 (5)
N1A—Cu1.953 (5)O1—H1W0.83 (3)
N3A—H3NA0.86 (3)O1—H2W0.83 (3)
N4A—N5A1.380 (7)O2—H3W0.82 (3)
N6A—Cu2.117 (5)O2—H4W0.81 (3)
C1B—N6B1.343 (7)O3—H5W0.79 (3)
C1B—C2B1.374 (8)O3—H6W0.80 (3)
C1B—C5B1.444 (8)O4—H7W0.83 (3)
C2B—N7B1.331 (8)O4—H8W0.81 (3)
C2B—H2B0.9500Br1—Cu2.7466 (12)
N6A—C1A—C4A121.1 (5)C3B—C4B—H4B119.9
N6A—C1A—C5A113.4 (5)N1B—C5B—N5B106.8 (5)
C4A—C1A—C5A125.5 (5)N1B—C5B—C1B120.5 (6)
N6A—C2A—C3A120.0 (6)N5B—C5B—C1B132.6 (5)
N6A—C2A—H2A120.0N2B—C6B—N5B113.1 (5)
C3A—C2A—H2A120.0N2B—C6B—N3B141.3 (5)
N7A—C3A—C2A122.6 (6)N5B—C6B—N3B105.6 (5)
N7A—C3A—H3A118.7N4B—C7B—N3B113.6 (5)
C2A—C3A—H3A118.7N4B—C7B—C8B124.2 (6)
N7A—C4A—C1A121.6 (6)N3B—C7B—C8B122.1 (6)
N7A—C4A—H4A119.2C7B—C8B—H8D109.5
C1A—C4A—H4A119.2C7B—C8B—H8E109.5
N1A—C5A—N5A107.3 (5)H8D—C8B—H8E109.5
N1A—C5A—C1A120.2 (5)C7B—C8B—H8F109.5
N5A—C5A—C1A132.5 (5)H8D—C8B—H8F109.5
N2A—C6A—N5A113.6 (5)H8E—C8B—H8F109.5
N2A—C6A—N3A141.3 (5)C5B—N1B—N2B111.6 (5)
N5A—C6A—N3A105.0 (5)C5B—N1B—Cu114.2 (4)
N4A—C7A—N3A114.4 (5)N2B—N1B—Cu134.2 (4)
N4A—C7A—C8A123.9 (6)C6B—N2B—N1B102.5 (5)
N3A—C7A—C8A121.8 (6)C6B—N3B—C7B106.2 (5)
C7A—C8A—H8A109.5C6B—N3B—H3NB119 (5)
C7A—C8A—H8B109.5C7B—N3B—H3NB134 (5)
H8A—C8A—H8B109.5C7B—N4B—N5B101.8 (5)
C7A—C8A—H8C109.5C6B—N5B—C5B106.0 (5)
H8A—C8A—H8C109.5C6B—N5B—N4B112.7 (5)
H8B—C8A—H8C109.5C5B—N5B—N4B141.2 (5)
C5A—N1A—N2A111.8 (5)C4B—N6B—C1B117.2 (5)
C5A—N1A—Cu114.2 (4)C4B—N6B—Cu131.1 (4)
N2A—N1A—Cu133.9 (4)C1B—N6B—Cu111.7 (4)
C6A—N2A—N1A102.1 (5)C3B—N7B—C2B116.5 (5)
C6A—N3A—C7A105.4 (5)Cu—O1—H1W111 (6)
C6A—N3A—H3NA128 (5)Cu—O1—H2W115 (6)
C7A—N3A—H3NA126 (5)H1W—O1—H2W101 (4)
C7A—N4A—N5A101.5 (5)H3W—O2—H4W112 (9)
C6A—N5A—C5A105.2 (5)H5W—O3—H6W103 (8)
C6A—N5A—N4A113.7 (5)H7W—O4—H8W105 (9)
C5A—N5A—N4A141.1 (5)N1B—Cu—N1A175.5 (2)
C2A—N6A—C1A117.8 (5)N1B—Cu—N6A97.78 (19)
C2A—N6A—Cu130.8 (4)N1A—Cu—N6A80.67 (19)
C1A—N6A—Cu111.4 (4)N1B—Cu—N6B80.60 (19)
C3A—N7A—C4A116.8 (5)N1A—Cu—N6B100.64 (19)
N6B—C1B—C2B122.2 (5)N6A—Cu—N6B175.62 (18)
N6B—C1B—C5B113.0 (5)N1B—Cu—O191.16 (19)
C2B—C1B—C5B124.8 (5)N1A—Cu—O184.78 (19)
N7B—C2B—C1B121.4 (6)N6A—Cu—O193.64 (17)
N7B—C2B—H2B119.3N6B—Cu—O182.35 (17)
C1B—C2B—H2B119.3N1B—Cu—Br192.56 (15)
N7B—C3B—C4B122.5 (6)N1A—Cu—Br191.68 (15)
N7B—C3B—H3B118.7N6A—Cu—Br192.06 (13)
C4B—C3B—H3B118.7N6B—Cu—Br192.08 (13)
N6B—C4B—C3B120.2 (6)O1—Cu—Br1172.72 (11)
N6B—C4B—H4B119.9
N6A—C2A—C3A—N7A1.2 (9)N6B—C1B—C2B—N7B1.4 (9)
N6A—C1A—C4A—N7A1.6 (9)C5B—C1B—C2B—N7B178.9 (5)
C5A—C1A—C4A—N7A179.5 (5)N7B—C3B—C4B—N6B1.9 (10)
N6A—C1A—C5A—N1A2.0 (8)N6B—C1B—C5B—N1B1.3 (8)
C4A—C1A—C5A—N1A179.0 (6)C2B—C1B—C5B—N1B176.3 (6)
N6A—C1A—C5A—N5A179.4 (6)N6B—C1B—C5B—N5B178.6 (6)
C4A—C1A—C5A—N5A0.5 (10)C2B—C1B—C5B—N5B1.0 (10)
N5A—C5A—N1A—N2A0.1 (6)N5B—C5B—N1B—N2B0.3 (6)
C1A—C5A—N1A—N2A179.0 (5)C1B—C5B—N1B—N2B177.6 (5)
N5A—C5A—N1A—Cu177.7 (3)N5B—C5B—N1B—Cu179.9 (4)
C1A—C5A—N1A—Cu3.4 (7)C1B—C5B—N1B—Cu2.2 (7)
N5A—C6A—N2A—N1A0.8 (6)N5B—C6B—N2B—N1B0.8 (6)
N3A—C6A—N2A—N1A178.5 (7)N3B—C6B—N2B—N1B179.3 (8)
C5A—N1A—N2A—C6A0.5 (6)C5B—N1B—N2B—C6B0.3 (6)
Cu—N1A—N2A—C6A177.5 (4)Cu—N1B—N2B—C6B179.4 (4)
N2A—C6A—N3A—C7A179.3 (8)N2B—C6B—N3B—C7B179.2 (8)
N5A—C6A—N3A—C7A1.4 (6)N5B—C6B—N3B—C7B0.6 (6)
N4A—C7A—N3A—C6A0.7 (7)N4B—C7B—N3B—C6B0.3 (7)
C8A—C7A—N3A—C6A179.9 (6)C8B—C7B—N3B—C6B179.9 (6)
N3A—C7A—N4A—N5A0.3 (7)N3B—C7B—N4B—N5B1.0 (6)
C8A—C7A—N4A—N5A179.1 (6)C8B—C7B—N4B—N5B179.4 (6)
N2A—C6A—N5A—C5A0.7 (7)N2B—C6B—N5B—C5B1.0 (7)
N3A—C6A—N5A—C5A179.3 (4)N3B—C6B—N5B—C5B179.9 (5)
N2A—C6A—N5A—N4A179.6 (5)N2B—C6B—N5B—N4B179.6 (5)
N3A—C6A—N5A—N4A1.8 (6)N3B—C6B—N5B—N4B1.3 (6)
N1A—C5A—N5A—C6A0.3 (6)N1B—C5B—N5B—C6B0.8 (6)
C1A—C5A—N5A—C6A178.4 (6)C1B—C5B—N5B—C6B176.8 (6)
N1A—C5A—N5A—N4A178.8 (6)N1B—C5B—N5B—N4B178.7 (6)
C1A—C5A—N5A—N4A0.1 (12)C1B—C5B—N5B—N4B1.2 (12)
C7A—N4A—N5A—C6A1.3 (6)C7B—N4B—N5B—C6B1.4 (6)
C7A—N4A—N5A—C5A179.7 (7)C7B—N4B—N5B—C5B179.3 (7)
C3A—C2A—N6A—C1A0.8 (8)C3B—C4B—N6B—C1B0.6 (8)
C3A—C2A—N6A—Cu178.8 (4)C3B—C4B—N6B—Cu179.2 (4)
C4A—C1A—N6A—C2A1.0 (8)C2B—C1B—N6B—C4B1.0 (8)
C5A—C1A—N6A—C2A180.0 (5)C5B—C1B—N6B—C4B178.7 (5)
C4A—C1A—N6A—Cu178.7 (4)C2B—C1B—N6B—Cu177.8 (5)
C5A—C1A—N6A—Cu0.3 (6)C5B—C1B—N6B—Cu0.1 (6)
C2A—C3A—N7A—C4A1.7 (8)C4B—C3B—N7B—C2B1.5 (9)
C1A—C4A—N7A—C3A1.9 (8)C1B—C2B—N7B—C3B0.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A···N2B0.952.383.137 (8)137
C3A—H3A···Br1i0.953.114.058 (6)173
N3A—H3NA···O20.86 (3)1.82 (3)2.657 (7)165 (7)
C4B—H4B···N2A0.952.523.276 (8)136
C4B—H4B···Br1ii0.953.093.848 (6)138
N3B—H3NB···Br20.85 (3)2.34 (3)3.190 (5)173 (7)
O1—H1W···Br1iii0.83 (3)2.42 (3)3.229 (5)166 (6)
O1—H2W···Br2ii0.83 (3)2.49 (3)3.301 (5)168 (8)
O2—H3W···Br1ii0.82 (3)2.43 (3)3.237 (5)173 (9)
O2—H4W···O3iv0.81 (3)1.89 (4)2.691 (7)167 (10)
O3—H5W···O4v0.79 (3)2.08 (6)2.746 (7)141 (8)
O3—H6W···N7A0.80 (3)2.17 (4)2.931 (7)159 (9)
O4—H7W···N7B0.83 (3)2.12 (3)2.939 (7)171 (9)
O4—H8W···Br2iv0.81 (3)2.56 (6)3.272 (6)147 (8)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+3/2, z; (v) x, y+1, z+1/2.
Dibromido[4-methyl-7-(pyrazin-2-yl)-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole][4-methyl-7-(pyrazin-2-yl)-3H-[1,2,4]triazolo[3,2-c][1,2,4]triazole]zinc(II) monohydrate (2) top
Crystal data top
[ZnBr2(C8H7N7)2]·H2OZ = 2
Mr = 645.62F(000) = 636
Triclinic, P1Dx = 1.884 Mg m3
a = 8.396 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.305 (3) ÅCell parameters from 467 reflections
c = 12.724 (3) Åθ = 2.5–29.4°
α = 112.53 (2)°µ = 4.63 mm1
β = 107.78 (3)°T = 293 K
γ = 92.16 (2)°Prismatic, brown
V = 1138.1 (5) Å30.40 × 0.30 × 0.20 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5090 independent reflections
Radiation source: normal-focus sealed tube3636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1515
Tmin = 0.270, Tmax = 0.433l = 1616
12306 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0621P)2 + 1.6216P]
where P = (Fo2 + 2Fc2)/3
5090 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 0.70 e Å3
2 restraintsΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were collected on a Bruker-Nonius KappaCCD diffractometer equipped with Oxford Cryostream 700 apparatus. The structures were solved by direct methods and refined by the full matrix least squares method with anisotropic displacement parameters for non-H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.7622 (6)0.1592 (4)0.2765 (5)0.0327 (10)
C2A0.8753 (7)0.1982 (5)0.3538 (5)0.0419 (12)
H2A0.9107960.1529120.4371550.050*
C3A0.8825 (7)0.3578 (5)0.1909 (6)0.0473 (13)
H3A0.9192720.4292480.1572030.057*
C4A0.7757 (8)0.3151 (5)0.1150 (6)0.0499 (14)
H4A0.7475530.3572300.0316460.060*
C5A0.6867 (6)0.0542 (4)0.3258 (5)0.0328 (10)
C6A0.5263 (6)0.0829 (4)0.3413 (4)0.0323 (10)
C7A0.3906 (6)0.0624 (5)0.1628 (5)0.0394 (11)
C8A0.2693 (8)0.0807 (7)0.0606 (5)0.0581 (17)
H8A0.2738910.0239300.0148490.087*
H8B0.2995090.1602860.0686900.087*
H8C0.1563110.0697450.0619950.087*
N1A0.7145 (5)0.0033 (4)0.4421 (4)0.0394 (10)
N2A0.6147 (6)0.0897 (4)0.4513 (4)0.0391 (10)
H2NA0.607 (7)0.138 (4)0.517 (3)0.047*
N3A0.4115 (5)0.1312 (4)0.2834 (4)0.0352 (9)
N4A0.4836 (5)0.0220 (4)0.1438 (4)0.0394 (10)
N5A0.5711 (5)0.0065 (4)0.2614 (4)0.0334 (9)
N6A0.7115 (6)0.2166 (4)0.1556 (4)0.0445 (11)
N7A0.9342 (6)0.2990 (4)0.3114 (5)0.0472 (11)
C1B0.6464 (6)0.3015 (4)0.7817 (4)0.0335 (10)
C2B0.7013 (8)0.3681 (5)0.9056 (5)0.0525 (15)
H2B0.6530690.4348090.9359480.063*
C3B0.8740 (8)0.2402 (6)0.9334 (6)0.0560 (16)
H3B0.9545920.2157860.9842760.067*
C4B0.8170 (7)0.1699 (5)0.8100 (6)0.0476 (14)
H4B0.8600050.1002780.7805500.057*
C5B0.5245 (6)0.3357 (4)0.6953 (4)0.0333 (10)
C6B0.3573 (6)0.4326 (4)0.6126 (5)0.0364 (11)
C7B0.3548 (6)0.5944 (4)0.7617 (5)0.0352 (10)
C8B0.3150 (7)0.7132 (5)0.8251 (6)0.0474 (13)
H8D0.2017700.7037140.8265300.071*
H8E0.3232540.7623470.7832020.071*
H8F0.3942770.7505440.9067710.071*
N1B0.4712 (6)0.2739 (4)0.5773 (4)0.0408 (10)
N2B0.3645 (5)0.3337 (4)0.5216 (4)0.0412 (10)
N3B0.2928 (5)0.5339 (4)0.6371 (4)0.0376 (10)
H3NB0.245 (6)0.563 (5)0.588 (4)0.045*
N4B0.4512 (5)0.5378 (4)0.8169 (4)0.0351 (9)
N5B0.4513 (5)0.4356 (3)0.7202 (3)0.0310 (8)
N6B0.7007 (5)0.2004 (4)0.7322 (4)0.0388 (10)
N7B0.8197 (7)0.3407 (5)0.9827 (5)0.0585 (14)
Zn0.25393 (7)0.24715 (5)0.33982 (5)0.03379 (16)
Br10.00038 (7)0.11388 (5)0.29176 (6)0.04583 (17)
Br20.20342 (8)0.39584 (6)0.26552 (7)0.0577 (2)
O1W0.1184 (9)0.6539 (6)0.5184 (5)0.103 (2)
H1W0.0612800.7101750.5729210.124*
H2W0.0507680.6365490.4341860.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.034 (2)0.031 (2)0.036 (3)0.0062 (18)0.013 (2)0.015 (2)
C2A0.044 (3)0.046 (3)0.038 (3)0.013 (2)0.015 (2)0.019 (3)
C3A0.052 (3)0.036 (3)0.053 (4)0.015 (2)0.022 (3)0.014 (3)
C4A0.058 (3)0.042 (3)0.040 (3)0.009 (3)0.014 (3)0.009 (3)
C5A0.033 (2)0.033 (2)0.034 (3)0.0084 (19)0.012 (2)0.016 (2)
C6A0.030 (2)0.035 (2)0.029 (3)0.0062 (18)0.0089 (19)0.010 (2)
C7A0.034 (2)0.051 (3)0.033 (3)0.010 (2)0.011 (2)0.018 (2)
C8A0.056 (4)0.081 (5)0.034 (3)0.032 (3)0.012 (3)0.022 (3)
N1A0.046 (2)0.039 (2)0.037 (2)0.0150 (18)0.0148 (19)0.018 (2)
N2A0.046 (2)0.041 (2)0.028 (2)0.0166 (19)0.0121 (19)0.0122 (19)
N3A0.033 (2)0.044 (2)0.030 (2)0.0121 (17)0.0098 (17)0.0169 (19)
N4A0.041 (2)0.046 (2)0.030 (2)0.0111 (18)0.0093 (18)0.015 (2)
N5A0.033 (2)0.035 (2)0.031 (2)0.0075 (16)0.0090 (17)0.0143 (18)
N6A0.050 (3)0.040 (2)0.038 (3)0.009 (2)0.010 (2)0.015 (2)
N7A0.054 (3)0.044 (3)0.049 (3)0.018 (2)0.019 (2)0.022 (2)
C1B0.037 (2)0.031 (2)0.031 (3)0.0064 (19)0.007 (2)0.013 (2)
C2B0.064 (4)0.045 (3)0.034 (3)0.020 (3)0.001 (3)0.013 (3)
C3B0.057 (4)0.064 (4)0.053 (4)0.018 (3)0.008 (3)0.038 (3)
C4B0.046 (3)0.041 (3)0.060 (4)0.017 (2)0.016 (3)0.027 (3)
C5B0.036 (2)0.029 (2)0.030 (3)0.0048 (18)0.009 (2)0.009 (2)
C6B0.036 (2)0.036 (3)0.033 (3)0.0078 (19)0.006 (2)0.014 (2)
C7B0.032 (2)0.038 (3)0.038 (3)0.0065 (19)0.015 (2)0.016 (2)
C8B0.055 (3)0.039 (3)0.052 (4)0.022 (2)0.024 (3)0.018 (3)
N1B0.047 (2)0.037 (2)0.032 (2)0.0122 (18)0.0070 (19)0.0116 (19)
N2B0.043 (2)0.039 (2)0.034 (2)0.0134 (18)0.0041 (19)0.013 (2)
N3B0.037 (2)0.040 (2)0.036 (2)0.0131 (18)0.0079 (18)0.019 (2)
N4B0.040 (2)0.032 (2)0.029 (2)0.0082 (17)0.0104 (17)0.0097 (18)
N5B0.036 (2)0.0290 (19)0.023 (2)0.0067 (16)0.0060 (16)0.0093 (16)
N6B0.038 (2)0.034 (2)0.042 (3)0.0103 (17)0.0131 (19)0.013 (2)
N7B0.062 (3)0.068 (3)0.040 (3)0.025 (3)0.006 (2)0.023 (3)
Zn0.0331 (3)0.0369 (3)0.0277 (3)0.0079 (2)0.0052 (2)0.0137 (2)
Br10.0391 (3)0.0392 (3)0.0574 (4)0.0062 (2)0.0161 (2)0.0187 (3)
Br20.0535 (4)0.0593 (4)0.0712 (5)0.0088 (3)0.0129 (3)0.0451 (4)
O1W0.152 (6)0.104 (5)0.063 (4)0.078 (4)0.028 (4)0.046 (3)
Geometric parameters (Å, º) top
C1A—N6A1.338 (7)C1B—C5B1.460 (7)
C1A—C2A1.388 (7)C2B—N7B1.322 (7)
C1A—C5A1.466 (7)C2B—H2B0.9300
C2A—N7A1.330 (7)C3B—N7B1.324 (8)
C2A—H2A0.9300C3B—C4B1.382 (9)
C3A—N7A1.335 (8)C3B—H3B0.9300
C3A—C4A1.381 (8)C4B—N6B1.340 (7)
C3A—H3A0.9300C4B—H4B0.9300
C4A—N6A1.329 (7)C5B—N1B1.313 (7)
C4A—H4A0.9300C5B—N5B1.366 (6)
C5A—N1A1.310 (7)C6B—N2B1.339 (7)
C5A—N5A1.372 (6)C6B—N5B1.341 (6)
C6A—N3A1.330 (6)C6B—N3B1.342 (6)
C6A—N2A1.337 (6)C7B—N4B1.305 (6)
C6A—N5A1.339 (6)C7B—N3B1.379 (7)
C7A—N4A1.315 (7)C7B—C8B1.482 (7)
C7A—N3A1.390 (7)C8B—H8D0.9600
C7A—C8A1.487 (7)C8B—H8E0.9600
C8A—H8A0.9600C8B—H8F0.9600
C8A—H8B0.9600N1B—N2B1.381 (6)
C8A—H8C0.9600N2B—Zn2.018 (4)
N1A—N2A1.371 (6)N3B—H3NB0.85 (2)
N2A—H2NA0.84 (2)N4B—N5B1.382 (6)
N3A—Zn2.059 (4)Zn—Br22.3581 (9)
N4A—N5A1.384 (6)Zn—Br12.4017 (11)
C1B—N6B1.330 (6)O1W—H1W1.0251
C1B—C2B1.381 (8)O1W—H2W0.9795
N6A—C1A—C2A122.7 (5)N7B—C2B—H2B118.7
N6A—C1A—C5A117.0 (4)C1B—C2B—H2B118.7
C2A—C1A—C5A120.3 (5)N7B—C3B—C4B123.3 (5)
N7A—C2A—C1A121.4 (5)N7B—C3B—H3B118.4
N7A—C2A—H2A119.3C4B—C3B—H3B118.4
C1A—C2A—H2A119.3N6B—C4B—C3B121.1 (5)
N7A—C3A—C4A121.7 (5)N6B—C4B—H4B119.5
N7A—C3A—H3A119.2C3B—C4B—H4B119.5
C4A—C3A—H3A119.2N1B—C5B—N5B108.6 (4)
N6A—C4A—C3A123.0 (6)N1B—C5B—C1B123.8 (5)
N6A—C4A—H4A118.5N5B—C5B—C1B127.5 (4)
C3A—C4A—H4A118.5N2B—C6B—N5B110.8 (4)
N1A—C5A—N5A110.0 (4)N2B—C6B—N3B143.1 (5)
N1A—C5A—C1A122.7 (4)N5B—C6B—N3B106.1 (4)
N5A—C5A—C1A127.1 (5)N4B—C7B—N3B113.8 (4)
N3A—C6A—N2A143.3 (5)N4B—C7B—C8B124.0 (5)
N3A—C6A—N5A110.0 (4)N3B—C7B—C8B122.2 (5)
N2A—C6A—N5A106.7 (4)C7B—C8B—H8D109.5
N4A—C7A—N3A115.8 (4)C7B—C8B—H8E109.5
N4A—C7A—C8A121.6 (5)H8D—C8B—H8E109.5
N3A—C7A—C8A122.7 (5)C7B—C8B—H8F109.5
C7A—C8A—H8A109.5H8D—C8B—H8F109.5
C7A—C8A—H8B109.5H8E—C8B—H8F109.5
H8A—C8A—H8B109.5C5B—N1B—N2B109.4 (4)
C7A—C8A—H8C109.5C6B—N2B—N1B105.0 (4)
H8A—C8A—H8C109.5C6B—N2B—Zn139.0 (3)
H8B—C8A—H8C109.5N1B—N2B—Zn115.6 (3)
C5A—N1A—N2A105.5 (4)C6B—N3B—C7B105.6 (4)
C6A—N2A—N1A110.4 (4)C6B—N3B—H3NB128 (4)
C6A—N2A—H2NA125 (4)C7B—N3B—H3NB125 (4)
N1A—N2A—H2NA124 (4)C7B—N4B—N5B101.7 (4)
C6A—N3A—C7A102.1 (4)C6B—N5B—C5B106.2 (4)
C6A—N3A—Zn131.9 (4)C6B—N5B—N4B112.9 (4)
C7A—N3A—Zn124.5 (3)C5B—N5B—N4B140.8 (4)
C7A—N4A—N5A101.0 (4)C1B—N6B—C4B115.7 (5)
C6A—N5A—C5A107.4 (4)C2B—N7B—C3B115.2 (6)
C6A—N5A—N4A111.0 (4)N2B—Zn—N3A105.76 (17)
C5A—N5A—N4A141.5 (4)N2B—Zn—Br2106.45 (13)
C4A—N6A—C1A114.9 (5)N3A—Zn—Br2118.70 (12)
C2A—N7A—C3A116.3 (5)N2B—Zn—Br1109.44 (14)
N6B—C1B—C2B122.1 (5)N3A—Zn—Br1102.56 (12)
N6B—C1B—C5B115.0 (5)Br2—Zn—Br1113.50 (4)
C2B—C1B—C5B122.9 (5)H1W—O1W—H2W107.6
N7B—C2B—C1B122.6 (6)
N6A—C1A—C2A—N7A3.1 (8)N6B—C1B—C2B—N7B4.8 (10)
C5A—C1A—C2A—N7A174.1 (5)C5B—C1B—C2B—N7B175.6 (6)
N7A—C3A—C4A—N6A3.0 (9)N7B—C3B—C4B—N6B0.2 (10)
N6A—C1A—C5A—N1A173.9 (5)N6B—C1B—C5B—N1B0.6 (7)
C2A—C1A—C5A—N1A3.5 (7)C2B—C1B—C5B—N1B179.8 (5)
N6A—C1A—C5A—N5A1.2 (7)N6B—C1B—C5B—N5B178.4 (5)
C2A—C1A—C5A—N5A178.6 (5)C2B—C1B—C5B—N5B2.0 (8)
N5A—C5A—N1A—N2A0.3 (5)N5B—C5B—N1B—N2B1.5 (6)
C1A—C5A—N1A—N2A176.1 (4)C1B—C5B—N1B—N2B176.7 (4)
N3A—C6A—N2A—N1A178.4 (6)N5B—C6B—N2B—N1B0.9 (6)
N5A—C6A—N2A—N1A0.9 (6)N3B—C6B—N2B—N1B176.8 (7)
C5A—N1A—N2A—C6A0.7 (6)N5B—C6B—N2B—Zn172.4 (4)
N2A—C6A—N3A—C7A178.7 (7)N3B—C6B—N2B—Zn9.9 (12)
N5A—C6A—N3A—C7A0.6 (5)C5B—N1B—N2B—C6B0.4 (6)
N2A—C6A—N3A—Zn12.6 (10)C5B—N1B—N2B—Zn175.5 (3)
N5A—C6A—N3A—Zn166.7 (3)N2B—C6B—N3B—C7B177.2 (7)
N4A—C7A—N3A—C6A0.4 (6)N5B—C6B—N3B—C7B0.5 (5)
C8A—C7A—N3A—C6A178.6 (5)N4B—C7B—N3B—C6B0.9 (6)
N4A—C7A—N3A—Zn168.0 (4)C8B—C7B—N3B—C6B178.7 (5)
C8A—C7A—N3A—Zn11.1 (7)N3B—C7B—N4B—N5B0.8 (5)
N3A—C7A—N4A—N5A0.1 (6)C8B—C7B—N4B—N5B178.7 (5)
C8A—C7A—N4A—N5A178.9 (5)N2B—C6B—N5B—C5B1.8 (6)
N3A—C6A—N5A—C5A178.9 (4)N3B—C6B—N5B—C5B176.8 (4)
N2A—C6A—N5A—C5A0.7 (5)N2B—C6B—N5B—N4B178.5 (4)
N3A—C6A—N5A—N4A0.6 (5)N3B—C6B—N5B—N4B0.1 (6)
N2A—C6A—N5A—N4A179.0 (4)N1B—C5B—N5B—C6B2.0 (5)
N1A—C5A—N5A—C6A0.3 (5)C1B—C5B—N5B—C6B176.1 (5)
C1A—C5A—N5A—C6A175.3 (5)N1B—C5B—N5B—N4B177.2 (5)
N1A—C5A—N5A—N4A177.7 (5)C1B—C5B—N5B—N4B0.9 (10)
C1A—C5A—N5A—N4A2.1 (9)C7B—N4B—N5B—C6B0.4 (5)
C7A—N4A—N5A—C6A0.3 (5)C7B—N4B—N5B—C5B174.6 (6)
C7A—N4A—N5A—C5A177.6 (6)C2B—C1B—N6B—C4B2.5 (8)
C3A—C4A—N6A—C1A2.0 (8)C5B—C1B—N6B—C4B177.8 (5)
C2A—C1A—N6A—C4A1.0 (7)C3B—C4B—N6B—C1B0.3 (8)
C5A—C1A—N6A—C4A176.3 (5)C1B—C2B—N7B—C3B4.3 (10)
C1A—C2A—N7A—C3A2.1 (8)C4B—C3B—N7B—C2B2.1 (10)
C4A—C3A—N7A—C2A0.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A···Br1i0.933.133.995 (6)155
N2A—H2NA···N1B0.84 (2)2.09 (4)2.786 (6)139 (5)
N2A—H2NA···N6B0.84 (2)2.39 (4)3.126 (6)145 (5)
C2B—H2B···N4B0.932.623.276 (7)129
C4B—H4B···Br1i0.932.863.791 (6)176
N3B—H3NB···O1W0.85 (2)1.85 (3)2.669 (6)163 (6)
O1W—H1W···Br1ii1.032.393.375 (6)162
O1W—H2W···N7Aiii0.982.032.901 (7)148
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x1, y+1, z.
 

Acknowledgements

The authors would like to acknowledge the con­tribution of the COST Action CA17120-Chemobrionics. Thanks are also due to the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmbrosanio, P., Centore, R., Concilio, S., Panunzi, B., Sirigu, A. & Tirelli, N. (1999). Polymer, 40, 4923–4928.  CrossRef CAS Google Scholar
First citationBorbone, F., Caruso, U., Centore, R., DeMaria, A., Fort, A., Fusco, M., Panunzi, B., Roviello, A. & Tuzi, A. (2004). Eur. J. Inorg. Chem. 2004, 2467–2476.  CSD CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBussetti, G., Campione, M., Riva, M., Picone, A., Raimondo, L., Ferraro, L., Hogan, C., Palummo, M., Brambilla, A., Finazzi, M., Duò, L., Sassella, A. & Ciccacci, F. (2014). Adv. Funct. Mater. 24, 958–963.  CrossRef CAS Google Scholar
First citationCentore, R., Concilio, S., Panunzi, B., Sirigu, A. & Tirelli, N. (1999). J. Polym. Sci. A Polym. Chem. 37, 603–608.  CrossRef CAS Google Scholar
First citationCentore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. 2013, 3721–3728.  CSD CrossRef CAS Google Scholar
First citationCentore, R., Manfredi, C., Capobianco, A., Volino, S., Ferrara, M. V., Carella, A., Fusco, S. & Peluso, A. (2017). J. Org. Chem. 82, 5155–5161.  CSD CrossRef CAS PubMed Google Scholar
First citationCentore, R., Manfredi, C., Fusco, S., Maglione, C., Carella, A., Capobianco, A., Peluso, A., Colonna, D. & Di Carlo, A. (2015). J. Mol. Struct. 1093, 119–124.  CSD CrossRef CAS Google Scholar
First citationCentore, R., Panunzi, B., Roviello, A., Sirigu, A. & Villano, P. (1996). J. Polym. Sci. A Polym. Chem. 34, 3203–3211.  CrossRef CAS Google Scholar
First citationCotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. (1999). In Advanced Inorganic Chemistry, 6th ed. New York: John Wiley & Sons Inc.  Google Scholar
First citationDeneva, V., Dobrikov, G., Crochet, A., Nedeltcheva, D., Fromm, K. M. & Antonov, L. (2019). J. Org. Chem. 15, 1898–1906.  CAS Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFusco, S., Parisi, E., Carella, A., Capobianco, A., Peluso, A., Manfredi, C., Borbone, F. & Centore, R. (2018). Cryst. Growth Des. 18, 6293–6301.  CSD CrossRef CAS Google Scholar
First citationGoodman, M. (1995). Nature, 378, 237–238.  CrossRef CAS PubMed Google Scholar
First citationHoriuchi, S., Kobayashi, K., Kumai, R. & Ishibashi, S. (2017). Nat. Commun. 8, 14426.  CSD CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, C. Y. (2009). J. Comput. Aided Mol. Des. 23, 693–704.  CrossRef PubMed CAS Google Scholar
First citationMcNaught, A. D. & Wilkinson, A. (1997). In IUPAC Compendium of Chemical Terminology, 2nd ed. Oxford: Blackwell Science.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationParisi, E., Capasso, D., Capobianco, A., Peluso, A., Di Gaetano, S., Fusco, S., Manfredi, C., Mozzillo, R., Pinto, G. & Centore, R. (2020). Dalton Trans. 49, 14452–14462.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutradhar, M., Alegria, E. C. B. A., Mahmudov, T., Guedes da Silva, F. C. & Pombeiro, A. J. L. (2016). RSC Adv., 6, 8079–8088.  CSD CrossRef CAS Google Scholar
First citationTakjoo, R. & Centore, R. (2013). J. Mol. Struct. 1031, 180–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationTaylor, P. J., Van der Zwan, G. & Antonov, L. (2014). In Tautomerism: Methods and Theories. Weinheim: Wiley-VCH Verlag GmbH & Co.  Google Scholar
First citationTodorov, A. R., Nieger, M. & Helaja, J. (2012). Chem. Eur. J. 18, 7269–7277.  CSD CrossRef CAS PubMed Google Scholar
First citationWang, W., Hellinga, W. & Beese, L. S. (2011). Proc. Natl Acad. Sci. USA, 108, 17644–17648.  CrossRef CAS PubMed Google Scholar
First citationWatson, J. D. & Crick, F. H. (1953a). Nature, 171, 737–738.  CrossRef PubMed CAS Google Scholar
First citationWatson, J. D. & Crick, F. H. (1953b). Nature, 171, 964–967.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds