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S1. Determination of the stacking distance – details and limitations 

S1.1. Fitting the dPDDF 

One of the key structural parameters of stacked or helical structures is the so-called repeat distance or 

helical pitch, respectively, which, in the context of this work, is the stacking-distance between 

building-blocks along the elongation direction in the proposed projection scheme (see main Figure 1). 

This recurrent nature of the same motif causes oscillations in the high-r regime of the pair distance 

distribution function (PDDF), as e.g. shown in Supporting Figures S1-3. However, these oscillation 

peaks are damped due to a sloped decay because of convolution with the overall shape. In the ideal 

case of perfectly 1D elongated structures such as stacked spheres the decay is linear (see Supporting 

Figure S1). We hence use the numerical derivative of the PDDF (dPDDF), to filter-out this decays its 

derivative yields constant offset for 1D elongated structures. However, additional distortions and 

damping-effects of the high-r oscillations can occur, such as bending of the structure, non-linearity of 

the helical strands, 1st and 2nd type of disorder in the stacking distance, etc. To account for we 

therefore fit the dPDDF using the damped sinusoidal function 

𝑓(𝑟) = 𝑦0 + 𝐴 ∙ sin (
2𝜋

𝐻𝐵𝐵
∙ 𝑟 + 𝜑0) 𝑒−𝜏 𝑟                 (𝑆1) 

Here, the frequency is directly related to the stacking-distance of the building blocks 𝐻𝐵𝐵, whereas the 

other parameters 𝑦0, 𝐴, 𝜑0 and 𝜏 are equally determined but yield no information relevant for this 

work.  

S1.2. The PDDF Fourier limit 

In general terms, the pair distance distribution function (PDDF) is the Fourier transform of scattering 

data, converting the information content from reciprocal into real-space (Glatter & Kratky, 1982; 

Feigin & Svergun, 1987). For an accurate calculation, this Fourier transform needs to be calculated 

over the full angular regime 0 < 𝑞 < ∞. However, the angular range in a given experimental dataset 

is limited by the smallest and largest accessible scattering vector 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥, which act as Fourier 

limits. As a consequence, the e.g. largest resolvable real-space dimension in the PDDF is limited by 

𝐷𝑚𝑎𝑥 < 𝜋/𝑞𝑚𝑖𝑛. The numerical calculation of the PDDF thus requires a boundary condition such that 

𝑃𝐷𝐷𝐹(𝑟) = 0 for 𝑟 > 𝐷𝑚𝑎𝑥 (Glatter & Kratky, 1982; Feigin & Svergun, 1987). Yet, in the case of 

seemingly infinite systems as discussed in this work, the length of a given structure 𝐿 is larger than 

the resolvable limit 𝐿 > 𝜋/𝑞𝑚𝑖𝑛  in reciprocal space or  𝐿 > 𝐷𝑚𝑎𝑥 in real-space, which violates the 

boundary condition above.  
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In order to investigate if the PDDF can be obtained from scattering data even if 𝐿 > 𝐷𝑚𝑎𝑥, we 

calculated the scattering pattern of 63 concentric stacked rings (see model L in Table 2) using a d-

spacing of 7𝑛𝑚 between them, which results in a total height of 439 nm. We then obtained the PDDF 

from this data-set using an increasing low-q Fourier limit 𝑞𝑚𝑖𝑛 such that simultaneously, the 

resolvable limit 𝐷𝑚𝑎𝑥 is decreased. The resulting curves, as well as the dPDDFs with corresponding 

fits are shown in Supporting Figure S3. 

Of course, the low-q transition from the 𝑞−0 Guinier to the rod-like 𝑞−1 Porod regime in the PDDF 

fits of the scattering patterns occurs earlier the more the scattering curve is truncated (see Supporting 

Figure S2 - top). However, the resulting PDDFs and dPDDFs remain congruent as only the number of 

stacking induced oscillations decreases due to the artificial truncation of the low-q range and 

consequently 𝐷𝑚𝑎𝑥 = 𝜋/𝑞𝑚𝑖𝑛. Further, and most important for the scope of this work, the 

corresponding fits of the dPDDF yield the right stacking-distance with an approximate error of 

<2%. A model reconstruction from the used scattering pattern can be found in Supporting Figure S5. 

S1.3. Limitations and error of misdetermination 

Of course, the determination of the stacking-distance from the dPDDF relies on the fact that the 

stacking-induced oscillations can be separated from the single-building-block- and the cross-

sectional-fingerprint. In the case of helical structures, there exist two scenarios where this might not 

be the case – for extremely high (case one) and extremely low (case two) building-block aspect ratios. 

Moreover, in case three, the effect of a wrongfully determined stacking-distance  𝐻𝐵𝐵 on the 

reconstruction is discussed.  

For case one, if the helix is pulled apart, the stacking-distance becomes significantly larger than the 

helix diameter: the actual twisted motif becomes weaker and less influential until, eventually, the 

helix is completely straight. Hence, the cross-sectional-fingerprint dominates the PDDF while the 

stacking-induced oscillations disappear. To investigate the possible error resulting from this effect, we 

determined the stacking-distance from the dPDDF of helices according to model D in Figures 2 and 3 

with increasing pitch, ranging from 10 to 100 nm (in all cases with diameter of 20 𝑛𝑚). The 

corresponding scattering curves, PDDFs, dPDDFs and fits can be found in Supporting Figure S5. For 

all cases with a stacking distance 𝐻𝐵𝐵 < 70 nm, the error of misdetermination was less than 2%, 

while this error systematically rises up to 6% for larger aspect ratios. 

The other scenario (case two) in which the stacking-induced oscillations might be influenced by the 

building-block is the opposite case of a highly compressed helix. In these cases, the stacking-distance 

is smaller than the helix-diameter, hence convoluting the first 1-2 high-r oscillations. This can cause 

misinterpretation, if these peaks are not neglected when fitting the damped sine function to retrieve 

the stacking-distance. As an example we fitted the dPDDF of the helix in model D in Figures 2 and 3 

with a diameter of 20 nm and a pitch of 10 nm. As seen in Supporting Figure S6, the determined 
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stacking-distance changes from 9.83 to 9.64 nm, if the first peak is considered, thus leading to an 

increased error. 

However, case three, there always exists the possibility of choosing a (slightly-) wrong building-block 

stacking-distance, e.g. when noisy experimental data is used (see Supporting Information section S2 

for details). Hence, the question arises to which extend the reconstruction remains stable. We thus 

took the scattering patterns of models D and F (pitch of 50 nm) and reconstructed the building-block 

motif using a series of wrong stacking-distances, ranging from 30 − 70 nm. Each reconstruction was 

performed under the exact same conditions in order to ensure comparability. The fitted scattering 

curves as well as the final reconstructions are shown in Supporting Figures S7-10.  

In case of model D: On first sight, the fitted scattering patterns are in good agreement with the 

analytical model. Yet, a detailed look at the low angular regime reveals clear deviations for the used 

stacking-distances 30, 40, 60 and 70𝑛𝑚 (see Supporting Figure S7). Similarly, the corresponding 

reconstructions present significant artefacts both in the lateral and cross-sectional perspective. As one 

would expect, these deviations in real- and reciprocal-space become smaller the closer the used 

stacking-distance comes to the real dimension (50 nm). Even though both the fitted scattering curves 

and the reconstructions of the cases using 45 and 55 nm still show deviations from the ideal case, the 

motif of the structure being a continuous single-strand helix, remains preserved.  

In case of model F: In this case, the fitted scattering patterns are in good agreement with the analytical 

model over the full q-range. Even in the low-q range, no particular deviations can be found (see 

Supporting Figure S9). Interestingly, the reconstructions in all cases present the typical double strand 

motif, even in cases of 30 and 70 nm (model pitch of 50 nm). However, particularly these two cases 

present strong deviations from the ideal shape in regard of the continuity of the helical strands. It is 

further noteworthy, that in none of the reconstructions of model F one helical strand is higher 

populated than the other, as one would expect if a helical motif would be forced onto the system. The 

helical bias term (𝛾 = 0.3 for all reconstructions shown in this work) hence does not influence the 

final reconstruction. 

These illustrative examples suggest that the algorithm presented in this work supplies stable 

reconstructions even if the stacking-distance of the building-blocks is determined with a relative error 

of less than 10%. 

S2. Additional considerations on “model resolution” 

The terminology of “model resolution” used in this work relates to two major aspects: the resolution 

limited by the information content provided by the scattering curve as well as the resolution relating 

to the used number of dummy atoms (DA). While these aspects overlap to some extent, we briefly 

address them separately to raise awareness and prevent model over- and misinterpretation. 
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S2.1. Angular information content 

A quantitative estimate of the information content accessible from scattering data is the number of 

Shannon channels 𝑁𝑆. In the case of globular particles, this number is defined by the largest accessible 

scattering angle 𝑞𝑚𝑎𝑥 and the maximum real-space dimension 𝐷𝑚𝑎𝑥 by 𝑁𝑆 = 𝑞𝑚𝑎𝑥𝐷𝑚𝑎𝑥/𝜋 (Shannon 

& Weaver, 1949; Damaschun et al., 1968; Taupin & Luzatti, 1982). Nevertheless, for helical 

structures, 𝐷𝑚𝑎𝑥 is seemingly infinite, which makes this formalism impractical.  

In a similar but more general formalism, 𝑞𝑚𝑎𝑥 can also be used to estimate the minimal sampling-

distance in real-space. This sampling distance hence defines the, mathematically speaking, real-space 

resolution corresponding to the scattering curve, such that the smallest resolvable feature is 𝑑𝑚𝑖𝑛 >

𝜋/𝑞𝑚𝑎𝑥 (Glatter & Kratky, 1982; Feigin & Svergun, 1987). In the case of scattering from a helical 

structure, the smallest structural motif is the width of the helical tape cross-section. Thus, the question 

arises to which extent the reconstruction of this motif is affected by an insufficient angular range and 

therefore real-space resolution. 

To visually investigate this effect, we repeated the reconstructions of models D and F in Figures 2 

and 3, using scattering curves with a de- and increased angular range. The resulting models and the 

corresponding curves are shown in Supporting Figure S19 & 20. In case of model D, all three 

reconstructions present the characteristic helical motif. However, the quality of the reconstructed tape 

as well as the overall radial cross-section is evidently better with increasing q-range. Also in case of 

model F, all three reconstructions present the characteristic double strand motif, whereas again the 

quality of the reconstructed strands as well as the overall radial cross-section is better with increasing 

q-range. Interestingly, even in the low resolution case (S.Fa) both helical strands are equally 

populated, suggesting that the helical bias parameter 𝛾 does not influence the reconstruction. 

In relative terms, the helical-tape cross section of the used models is 𝑡𝑤 = 5 nm whereas the 

resolution defined by the scattering angle corresponds to 3.1, 1.6 and 1.0 nm in the case of model 

scattering S.Da/S.Fa, S.Db/S.Fb and S.Dc/S.Fc., respectively. As only the latter two reconstructions 

(S.Db/S.Fb and S.Dc/S.Fc) resemble the actual model shape, we can conclude that reconstruction is 

not feasible if the resolution defined by the scattering range is worse than half of the helical-tape cross 

section. 

S2.2. Statistical information content 

Experimental scattering data is never noise free. Hence, the information content provided by a 

scattering curve is not only limited by the experimentally accessible angular range but also by the 

statistical quality of the data: the noise (Konarev & Svergun, 2015). So the obvious question in regard 

to this work is, at which noise level the determination of the stacking-distance and the fitting 

algorithm break down? 
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Therefore, we took the reference patterns of models D and F with an angular range corresponding to 

case S.Db/S.Fb (𝑞𝑚𝑎𝑥 = 2 nm−1) and gradually added artificial noise. In detail, we defined the error-

band according to 𝜎(𝑞) =  𝐸 [𝑐𝑚−
1

2] ∙ √𝐼(𝑞), whereas the four model cases S.D5/S.F5, S.D10/S.F10, 

S.D50/S.F50 and S.D100/S.F100 correspond to E=5, 10, 50 and 100, respectively.  We then distorted 

the scattering patterns by randomly moving each data point according to a Gaussian distribution with 

a standard-deviation defined by the error band. At 𝑞𝑚𝑎𝑥 = 2 nm−1, the relative noise compared to the 

scattering signal is hence approx. 15, 30, 150 and 300 % for S.D5/S.F5, S.D10/S.F10, S.D50/S.F50 

and S.D100/S.F100, respectively. The scattering curves together with the PDDFs and dPDDFs can be 

found in Supporting Figure S21. 

We first used the noisy data sets to determine the stacking distance 𝐻𝐵𝐵. For cases S.D5, S.D10 and 

S.D50 the found building-block height is within 10% of the real value (see Supporting Figure S21). 

Only in the case of S.D100, we find a stacking-distance of 56.89 nm, which is off by 14 % compared 

to the model-pitch of 50 nm. For cases S.F5-100, the building-block height is within 10% of the real 

value (see Supporting Figure S16). However, in case of S.F100, only two oscillations are found in the 

dPDDF, yielding the determined value questionable.  

Nevertheless, we reconstruct the structural motif from all scattering patterns using the determined 

stacking-distances. As seen in Supporting Figure S22, starting from the case of S.D10 the helical 

strand is not anymore continuous in the reconstructed model – a phenomenon similar to the effect of 

insufficient angular resolution as observed for S.Da in Supporting Figure S19. However, as seen in 

the point-representations in Supporting Figure S22c, the DA density remains homogenous such that a 

helical motif is suggested.  In the cases of S.D50 and S.D100 excessive DA clustering is observable 

such that the reconstruction is not feasible. However, a detailed look at the model data and the fitted 

scattering patterns in Supporting Figure S22a of S.D10, S.D50 and S.D100 shows an interesting 

anomaly: the reconstruction algorithm wrongfully fits artefacts in the scattering patterns that are 

caused by the random noise. In order to avoid this circumstance, we used the scattering patterns of the 

fitted PDDF curves (see Supporting Figure S21) as input for the reconstruction procedure. As shown 

in point representations in Supporting Figure S23 all reconstructions now present a homogenous DA 

distribution and no clustering occurs. However, a continuous helical strand is only found for cases 

S.D5, S.D10 and S.D50.  

Similar phenomena are witnessed for model F: as shown in Supporting Figure S24, direct fitting of 

the scattering data yields the characteristic double-stand motif for all reconstructions. For S.F50 and 

S.F100, minor deviations of the single strands from the ideal shape can be observed. In contrary to 

model D, reconstructions from the scattering patterns of the fitted PDF curves (see Supporting Figure 

S16) show no significant improvement or worsening (see Supporting Figure S25). However, a 

detailed comparison of the point plots (Supporting Figures S24c & 25c) reveals a more homogenous 
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DA distribution within the helical strands in the latter case (using the scattering intensity of the fitted 

PDDF). We find it further noteworthy that also in this case, no influence of the helical field can be 

seen in any of the double strand helix reconstructions. 

To summarize the above findings, direct fitting of noisy experimental data can lead to physically 

unfeasible artefacts such as DA clustering or strong inhomogeneties in the DA density, which can be 

improved using the smoothed scattering curve from the PDDF determination.  

S2.3. DA resolution 

In the case of fixed-grid DA modelling (Chacón et al., 1998; Walther et al., 2000; Svergun, 1999; 

Franke & Svergun, 2009; Koutsioubas & Pérez, 2013), the scale of the grid and thus the model 

resolution is defined prior to the fitting process. Hence, the number of DAs that represent the final 

model solely depends on the shape of the reconstruction. However, in the case of fitting by random 

DA movement, as proposed in this work, such an intrinsic spatial resolution limit does not exist. 

Consequently, to increase the model resolution, it appears intuitive to simply increase the number of 

DAs used for the fitting process, as this would add additional degrees of freedom to e.g. model the 

structure’s surface. However, and as already written in section 4.4, when performing such a random 

movement model reconstruction, it can be expected to end up with a fitted configuration that presents 

structural features below the resolution limit of the experimental data (𝑑𝑚𝑖𝑛 =  𝜋/𝑞𝑚𝑎𝑥  where 𝑞𝑚𝑎𝑥 

is the upper angular range of the fitable data (Glatter & Kratky, 1982; Feigin & Svergun, 1987)). 

Excessively increasing the number of DAs might thus actually not necessarily increase the model 

resolution, as also the amount of non-resolvable model artefacts will increase.  To minimize the risk 

of over-interpreting such artefacts, we suggest to keep the number of DAs rather low (from 

experience 𝑁 < 1000) or, if large numbers cannot be avoided, to always compare the final model 

with the resolution limit provided by the scattering curve and to perform a statistical analysis using 

e.g. DAMAVER (Volkov & Svergun, 2003) (see Supporting Figure S18 for an example of such an 

analysis). 

However, when minimizing the number of DAs used for the fitting process, one might run into other 

issues such as general under-sampling or, in the case of the proposed projection scheme, coherence 

effects resulting from the mirroring of an exact DA conformation. To illustrate the latter effect, we 

calculated scattering curves of artificially constructed single-strand helices with a decreasing number 

of DAs. In one case we generated the helix (consisting of 15 building block units) by randomly filling 

up the full helix, such that no two building-blocks would be the same. We then used the standard 

Debye formula to obtain the scattering pattern. In the other case, we only filled up one single 

building-block and then used our projection scheme to calculate the scattering curves. The results as 

well as the corresponding analytical model (Pringle & Schmidt, 1970) are shown in Supporting Figure 

S26.  
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As expected, the lower angular regime of all model curves (𝑞 < 1 nm−1)  is in good agreement with 

the analytical one. Even in the case of the 250 DAs/BB model, which corresponds to an approximate 

next-neighbor DA distance of 3 𝑛𝑚, no significant deviations are visible. Yet, when looking at the 

upper angular regime (1 < 𝑞 < 2 nm−1) of the projection scheme curve (250 𝐷As/BB), two rather 

obvious peaks appear. If now the number of DAs is increased, these peaks become weaker 

(500 DAs/BB) and eventually disappear(1000 𝐷As/BB).  However, the sole fact that the peaks’ 

positions between 250 and the 500 DAs/BB model do not change indicates that this effect is caused 

by the stacking of identical building blocks. A comparison to the scattering curves from the fully 

filled helices (equivalent to the stacking of non-identical building blocks) confirms this, as no such 

peaks can be found in the 250 𝐷As/BB model. 

To summarize the above, an excessive increase of the number of DAs used in a fitting process causes 

not only an immense numerical overhead, but also leads to an increased number of non-resolvable 

artefacts. This can further lead to misinterpretation of reconstructed models. On the other hand, if 

coherence effects, such as depicted in Supporting Figure S26, are visible in the fitted curve, one 

should nevertheless consider increasing the number DAs to suppress these effects. 

S3. Fitting algorithm – technical details 

The fitting algorithm implemented in SasHel starts from a random configuration 𝑋0. If wanted (but 

not suggested) the user can alter the following parameters (default values given in brackets): the initial 

temperature 𝑇0 (1), quenching coefficient 𝑞𝑇 (0.99), number of iterations 𝑁𝑘(100), number of 

fails 𝑁𝑓𝑎𝑖𝑙𝑠(100), helical bias parameter 𝛾(0.3) and radial compactness weight 𝛽(1).  The 

functional 𝑓(𝑋) and the scaling paramter 𝐷𝑋 of a given configuration 𝑋 are evaluated according to 

equations 8 and 4, respectively. Random movements 𝒓𝒓𝒂𝒏𝒅(𝑇) are generated according to equations 5 

and 6. Each random movement is checked 100 times for a collision via the hard contact limit 

0.1 〈𝑑N12,X〉. To recall: 

 〈𝑑N12,X〉 denotes the average 𝑑𝑁12 parameter over configuration 𝑋,  

 |𝒓𝒊| denotes the distance of the 𝑖𝑡ℎ DA to the center of mass (COM) (in case of stacked 

structures only 𝒆𝒙 and 𝒆𝒚 directions are considered),  

 〈|𝒓|〉𝑋 denotes the mean distance of all DAs to the COM (in case of stacked structures only 

𝒆𝒙 and 𝒆𝒚 directions are considered) and 

  𝒓𝑵𝑵,𝒊(𝑥) denotes the vector from the 𝑖𝑡ℎ DA to the COM of the 𝑥 nearest neighbors of 𝑖. As 

an example, |𝒓𝑵𝑵,𝒊(1)| returns the distance of the 𝑖𝑡ℎ DA to the nearest neighbor. 

A pseudo-code implementation of the full fitting algorithm is shown in Supporting Figure S27. 
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Figure S1 Analytical investigation of phenomena occurring in the PDDF and dPDDF using a 

model-case of 10 spheres with diameter of 4 nm and a stacking distance of 4 nm (Glatter, 1980). An 

illustration of the model used as input for the calculation of the PDDF is shown on the left. The 

calculated PDDF on the right shows distinct peaks, correlating to the intra- and inter-building-block 

contributions (blue and red, respectively). The dashed black line shows the linear nature of the high-r 

decay, characteristic for 1D extended geometries (Feigin & Svergun, 1987). The damped sine-

function fit of the numerically calculated dPDDF on the bottom is in good agreement (𝐻𝐵𝐵 = 3.98 

nm compared to input stacking distance of 4 nm). 
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Figure S2 Evolution of stacking-induced oscillations in the PDDF for the case of stacked torus. 

(Top) Scattering curves of stacked torus models (see model L in Table 2 of the main text) with a d-

spacing of 7 nm (red dots) together with the PDDF fits (black lines). The specified number denotes 

the number of rings that are axially stacked with a distance of 7 nm of each-other. (Middle): PDDFs 

of the corresponding scattering curves. (Bottom) Derivatives of the PDDFs (dPDDFs – red lines) as 

well as the fitted sinusoidal functions from which the stacking distances are determined (black lines). 
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Figure S3 Effect of a truncating Fourier Limit. (Top) Scattering curves of stacked rings (see model 

L in Table 2 of the main text) with a d-spacing of 7 nm (red dots) together with the PDDF fits (black 

lines). Transition from Guinier to Porod regime is indicated by an arrow.  The specified number 

denotes the number of rings that are stacked on each-other. The black crosses indicate the 𝑞𝑚𝑖𝑛 used 

for the calculation of the PDDFs (Middle): PDDFs of the corresponding scattering curves using the 

𝐷𝑚𝑎𝑥 as specified. (Bottom) Derivatives of the PDDFs (dPDDFs – red lines) as well as the fitted 

sinusoidal functions from which the stacking distances are determined (black lines). 
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Figure S4 Reconstruction from the scattering curve (curve 63b) of the stacked-rings model used in 

Supporting Figures S1 and S2. The rings correspond to model L in Table 2 of the main text and are 

separated by a d spacing of 7 nm. In this case, the reconstruction was performed from the scattering 

curve corresponding to 63 stacks (red dots) whereas the fitted curve (black line) is in good agreement 

with the theoretical model data. The reconstruction clearly resembles the structural motif of the 

model, further validating the algorithm proposed in this work. 
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Figure S5 Influence of increasing helical pitch on the determined stacking distance. (Top) 

Scattering curves of single strand helices (see model D in Table 2 of the main text) with varying pitch 

(red dots) together with the PDDF fits (black lines). The specified number denotes the helical pitch, 

ranging from 10 to 100 nm. (Middle): PDDFs of the corresponding scattering curves. (Bottom) 

Derivatives of the PDDFs (dPDDFs – red lines) as well as the fitted sinusoidal functions from which 

the stacking distances are determined (black lines). 
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Figure S6 Derivative of the PDDF (dPDDF) of a single strand helix as model D with a pitch of 

10 𝑛𝑚 (red lines) as well as two independently fitted sinusoidal functions from which the stacking 

distance can be determined (black line). At such a low pitch-to-diameter ratio, the first stacking-

induced oscillations can be influenced by the building-block characteristic PDDF-fingerprint. This 

can cause a distortion on the fitting procedure. Inclusion of this peak thus leads to an increased error 

(top) in the determined stacking-distance. The scattering curve as well as the PDDF corresponding to 

the dPDDF can be found in Supporting Figure S4.  
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Figure S7 Reconstruction of model D (see Table 2 of the main text) with a building-block height of 

50𝑛𝑚  using a series of wrong building-block stack distances 𝐻𝐵𝐵. The fitted curves are shown in (a): 

while all fits appear acceptable on first sight, larger deviations can be found in the low-q regime (see 

inset). Further, the actual reconstructions shown in (b) present significant artefacts if 𝐻𝐵𝐵 deviates by 

more than 10% from the real value. Point-representations of the reconstructions can be found in 

Supporting Figure S8. 
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Figure S8 Point-representations corresponding to Supporting Figure S7, showing orthogonal views 

of the reconstructions of model D using a wrongly chosen stacking distance 𝐻𝐵𝐵. 



 

 

IUCrJ (2018). 5,  doi:10.1107/S2052252518005493        Supporting information, sup-16 

 

Figure S9 Reconstruction of model F (see Table 2 of the main text) with a building-block height of 

50𝑛𝑚  using a series of wrong building-block stack distances 𝐻𝐵𝐵. The fitted curves are shown in (a): 

here, none of the fits show deviations from the model scattering-pattern even in in the low-q regime 

(see inset). In agreement with the investigation made on model D (see Supporting Figures S7 & S87) 

the corresponding reconstructions shown in (b) present artefacts if 𝐻𝐵𝐵 deviates by more than 10% 

from the real value. Point-representations of the reconstructions can be found in Supporting 

Figure S10. 
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Figure S10  Point-representations corresponding to Supporting Figure S9, showing orthogonal views 

of the reconstructions of model F using a wrongly chosen stacking distance 𝐻𝐵𝐵. 
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Figure S11  Reconstructions of model D (see Table 2 of the main text) using a variable helical bias 

parameter 𝛾. (a) Scattering curves of the analytical model and the corresponding fits. The annotations 

0.0, 0.3, 0.6 and 1.2 denote the actual  𝛾 value used for the reconstruction (0.3 is the default value for 

all other reconstructions shown in this work). (c) Convergence of the fitting algorithm shown by the 

decrease of the chi-square functional (see equation 3 of the main text) as a function of the annealing 

temperature.  (c) Resulting reconstructions according to the scattering curves in (a). (d) Point 

representations of the corresponding models, showing orthogonal views of the reconstructions. 
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Figure S12  Pair distance distribution functions (PDDF) obtained from the scattering intensities 

presented in Figures 2 and 4. All curves were fitted from the analytical data using the GIFT software 

package (Bergmann et al., 2000). The black arrows indicate the peaks linked to the recurrence of the 

building-block motif (see Supporting Information section S1 for details). 
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Figure S13  dPDDFs of the helical models (A-G) as well as of the experimental data set (exp) shown 

in Figure 2 and Figure 5 of the main text, respectively.  The derivatives were calculated numerically 

from the PDDFs in Supporting Figure S11 and in inset of Figure 5. The dPDDFs were then fitted 

using the damped sine function according to equation S1. The resulting 𝐻𝐵𝐵 parameter is specified for 

each fit. Obviously, the determined stacking-distance of the double-strand models (𝑭 and G) is half of 

the real building-block size. This is due to the symmetry within the building-block: in a symmetric 

double helix, a building-block of pitch P with a full turn of 2𝜋 is equal to two stacked-units of turn 𝜋 

and pitch 𝑃/2. 
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Figure S14  (a) Magnification of the high-q regime of the scattering functions computed from the 

seemingly endless geometries in Figure 2. In this magnified representation, slight oscillations of the 

projection scheme patterns are visible. (b) Residual curves of the corresponding fits.   
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Figure S15  Point representations corresponding to Figure 3 of the main text, showing orthogonal 

views of the reconstructions from models A-G (see Table 2 of the main text). 
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Figure S16  Point representations corresponding to Figure 4 of the main text, showing orthogonal 

views of the reconstructions from models H-L (see Table 2 of the main text). 
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Figure S17  Point representations corresponding to Figure 5 of the main text, showing orthogonal 

views of the reconstructions from experimental data of the (a) elongated and (b) globular case. 
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Figure S18  Analysis of uniqueness and repeatability of the reconstruction from experimental 

scattering data of the (a) elongated and (b) globular case. In each case, 16 separate reconstructions 

were performed and subsequently averaged by DAMAVER (Volkov & Svergun, 2003). The dots 

denote positions of the full DAMAVER model whereas the green spheres correspond to the 50% 

occupancy representation (see orthogonal views at the bottom).  The theoretical models are shown in 

blue.  
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Figure S19  Reconstructions of model D (see Table 2 of the main text) using a variable angular 

range. (a) Truncated scattering curves of the analytical model and the corresponding fits. The curves 

S.Da, S.Db and S.Dc correspond to a real-space resolution of 3.1, 1.6 and 1.0 nm, respectively. (b) 

Resulting reconstructions according to the scattering curves above. Obviously, the helical motif is still 

visible in all three cases, yet the cross-section can only reliably be restored in the latter two cases. (c) 

Point representations of the corresponding models, showing orthogonal views of the reconstructions. 
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Figure S20  Reconstructions of model F (see Table 2 of the main text) using a variable angular 

range. (a) Truncated scattering curves of the analytical model and the corresponding fits. The curves 

S.Fa, S.Fb and S.Fc correspond to a real-space resolution of 3.1, 1.6 and 1.0 nm, respectively. (b) 

Resulting reconstructions according to the scattering curves above. Here, the helical double-strand 

motif is clearly visible in all three cases. At lower resolution, inhomogeneities in the DA density are 

witnessed. Increasing the q-range and thus the resolution, the DA distribution becomes more 

homogenous. (c) Point representations of the corresponding models, showing orthogonal views of the 

reconstructions. 
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Figure S21  Influence of increasing noise level on the determined stacking distance. (Top) Scattering 

curves of (a) single strand helices and (b) double strand helices (see model D and F in Table 2 of the 

main text, respectively) with varying noise level (colored dots) together with the PDDF fits (black 

lines). The specified number denotes the scalar 𝐸 [𝑛𝑚−
1

2] used to calculate the noise level according 

to 𝐸 ∗ √𝐼(𝑞).  Hence, at 𝑞𝑚𝑎𝑥 = 2 nm−1, the relative noise compared to the scattering signal is 

approx. 15, 30, 150 and 300 % for 𝐸 = 5, 10, 50 and 100, respectively. (Middle): PDDFs of the 

corresponding scattering curves. (Bottom) Derivatives of the PDDFs (dPDDFs – red lines) as well as 

the fitted sinusoidal functions from which the stacking distances are determined (black lines). 
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Figure S22  Reconstructions from the scattering patterns of model D (see Table 2 of the main text) 

using an increasing artificial error band. (a) Model scattering curves together with the corresponding 

fits. At 𝑞𝑚𝑎𝑥 = 2 nm−1, the relative noise compared to the scattering signal is approx. 15, 30, 150 

and 300 % for S.D5, S.D10, S.D50 and S.D100, respectively. (b) Resulting reconstructions according 

to the scattering curves above. The helical motif is visible in cases S.D5 and S.D10 whereas for higher 

noise levels DA clustering is observed. (c) Point representations of the corresponding models, 

showing orthogonal views of the reconstructions. 
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Figure S23  Reconstructions from scattering patterns of the fitted PDDF curves from model D (see 

Table 2 of the main text) using an increasing artificial error band. (a) Model scattering curves together 

with the corresponding fits. At 𝑞𝑚𝑎𝑥 = 2 nm−1, the relative noise compared to the scattering signal is 

approx. 15, 30, 150 and 300 % for S.D5, S.D10, S.D50 and S.D100, respectively. (b) Resulting 

reconstructions according to the scattering curves above. In all of the cases, the helical motif is clearly 

present and no DA clustering is observed. (c) Point representations of the corresponding models, 

showing orthogonal views of the reconstructions. 
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Figure S24  Reconstructions from the scattering patterns of model F (see Table 2 of the main text) 

using an increasing artificial error band. (a) Model scattering curves together with the corresponding 

fits. At 𝑞𝑚𝑎𝑥 = 2 nm−1, the relative noise compared to the scattering signal is approx. 15, 30, 150 

and 300 % for S.F5, S.F10, SF50 and S.F100, respectively. (b) Resulting reconstructions according 

to the scattering curves above. The double stranded helical motive is visible in all cases. At higher 

noise levels, (SF50 and S.F100) the strand surface becomes increasingly distorted and single, free 

floating DAs can be observed. (c) Point representations of the corresponding models, showing 

orthogonal views of the reconstructions. 
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Figure S25  Reconstructions from scattering patterns of the fitted PDDF curves from model F (see 

Table 2 of the main text) using an increasing artificial error band. (a) Model scattering curves together 

with the corresponding fits. At 𝑞𝑚𝑎𝑥 = 2 nm−1, the relative noise compared to the scattering signal is 

approx. 15, 30, 150 and 300 % for S.F5, S.F10, S.F50 and S.F100, respectively. (b) Resulting 

reconstructions according to the scattering curves above. Same as in Supporting Figure S22, the 

double stranded helical motif is clearly present in all cases. (c) Point representations of the 

corresponding models, showing orthogonal views of the reconstructions.  
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Figure S26  Scattering curves of an artificially filled single-strand helix with varying numbers of 

dummy atoms (DAs) per building block – stacked (red) and random (black) - in comparison to its 

analytical form factor (green). Obviously, the agreement between the artificial scattering curves (red 

and black) and the analytical model (green) becomes better when the number of DAs increases. 

However, the scattering data calculated using the proposed projection scheme (red) presents slight 

resonance effects in the upper q-regime. In congruence to above, this effect decreases when the DA 

density rises. (Details see Supporting Information section S2.3) 
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Figure S27  Pseudo-code implementation of the algorithm implemented in SasHel. For description of 

variables and further details see Supporting Information section S3. 

 

for 𝑘 =  1 𝑡𝑜 𝑁𝑘  { // algorithm consists of 𝑁𝑘iterations 

 𝑇 = 𝑇0 ∗ 𝑞𝑇
𝑘 −1  // set annealing temperature 

 randomly mix DA sequence in 𝑋0  

 

 for 𝑖 = 1 𝑡𝑜 𝑁𝐵𝐵  { // fitting procedure over all DAs 

  𝑋𝑛𝑒𝑤 = 𝑋0  where 𝒓𝒊,𝒏𝒆𝒘 = 𝒓𝒊,𝟎 + 𝒓𝒓𝒂𝒏𝒅
(𝑇) // random movement of 𝑖𝑡ℎ  DA 

  if ( 𝑓(𝑋𝑛𝑒𝑤
) < 𝑓(𝑋0

) // check for improvement of 𝑓(𝑋) and  

𝑋0 = 𝑋𝑛𝑒𝑤  // accept movement   

 } } // all DAs have been considered 

  

 if (𝑚𝑜𝑑(𝑘 , 2) == 0 { // every 2nd run of 𝑘 

  for 𝑖 = 0 𝑡𝑜 𝑁𝐵𝐵  { // check all DAs 

   if (|𝒓𝒊
| >  2 ∗ 𝐷𝑋0

) { // if DAs are outside the critical radius  

    𝒓𝒊 ∗= 1/3 //move DA towards COM 

} } } // all DAs have been considered 

 

if (𝑚𝑜𝑑(𝑘 , 10) == 0 { // every 10th run of 𝑘 

  for 𝑖 = 0 𝑡𝑜 𝑁𝐵𝐵  { // check all Das 

   if (𝐷12 ,𝑖 >  2 ∗ 〈𝐷12 ,X0
〉 and |𝒓𝒊

| > 〈|𝒓|〉
𝑋) { // if DAs are free floating 

    𝒓𝒊+= 1/2 ∗ 𝒓𝑁𝑁 ,𝑖
(𝑁𝐵𝐵/8) // move DAs towards 𝑁𝐵𝐵 /8 next neighbors 

}  

𝒓𝒊,𝒏𝒆𝒘 = 𝒓𝒊,𝟎  + 𝒓𝒓𝒂𝒏𝒅
(𝑇) // force random movement of 𝑖𝑡ℎ  DA 

} } } // end of all 𝑘 iterations 

 


