

Volume 26 (2019)

Supporting information for article:

Radiation-damage investigation of a DNA 16-mer

Valéria Bugris, Veronika Harmat, Györgyi Ferenc, Sándor Brockhauser, lan Carmichael and Elspeth F. Garman

Supplementary Material

Radiation damage investigation of a DNA 16-mer

Valéria Bugris^a, Veronika Harmat^{a,b}, Györgyi Ferenc^a, Sándor Brockhauser^{a,c}, Ian Carmichael^d, Elspeth F. Garman^e*

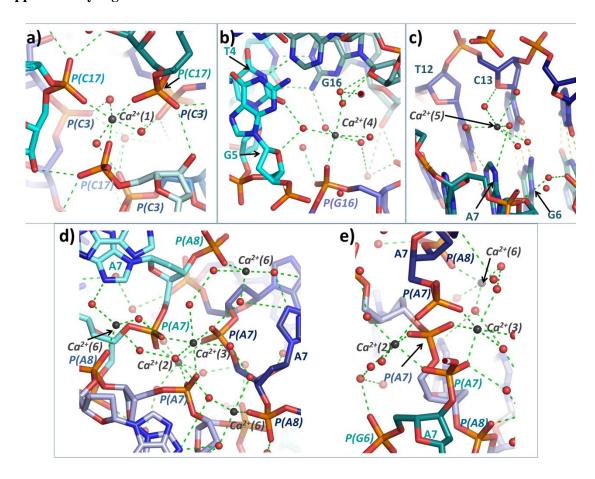
Supplementary Table 1. The non-water atoms listed in the top 25 radiation damage sites based on the D_{neg} (atom) values from RIDL (Bury and Garman 2018) for datasets 7, 13, 19, 25, 31 and 37, respectively, which are 60° wedges of the same irradiated crystal volume. (Atom names are listed with nucleotide IDs in parentheses. Different building blocks of the DNA chain are colour-coded: nucleotide base: light blue, deoxyribose moiety: yellow, phosphate moieties: orange, calcium ions: grey. O3' and O5' atoms of the sugar are coloured light orange as they are also part of the phosphate groups.)

Dataset No.	7	13	19	25	31	37
Dose (MGy)	6.2	12.0	17.7	23.5	29.2	35.0
Atom name (residue id)	N4(C14)	P(A15)	P(A15)	P(A15)	O5'(G5)	P(G16)
	P(G16)	P(G5)	P(G5)	P(G5)	P(G5)	Ca ²⁺ (2)
	C2(G2)	O5'(A15)	O5'(G5)	O5'(G5)	C8(G6)	C8(G6)
	O3'(G5)	O5'(G5)	C8(G6)	C8(G6)	P(G16)	P(G5)
	P(G5)	C5'(A15)	P(G6)	P(G16)	N7(G6)	P(G6)
	P(G6)	O5'(T10)	OP2(G6)	O5'(A15)	P(A15)	Ca ²⁺ (1)
	Ca ²⁺ (4)	C8(A7)	P(G16)	C5'(G6)	C4'(G5)	C5'(G6)
	N7(G6)	C4'(A15)	N7(G6)	C4'(G5)	O5'(G16)	O3'(A15)
	C2(C13)	O3'(A8)	OP1(G5)	N1(C17)	P(G6)	P(A7)
	O5'(A15)	C4(G2)	P(A9)	P(G6)	O5'(A15)	O3'(G16)
	O4(T12)	C5(G6)	C5'(C3)	P(A7)	P(A7)	C4'(G5)
	O5'(G2)	OP1(G5)	Ca ²⁺ (4)	C5'(G5)	Ca ²⁺ (2)	O5'(G16)
	P(A8)	P(C14)	O5'(A9)	N7(G6)	P(C17)	O5'(G5)
	O4'(G5)	C5'(T10)	O5'(A15)	O5'(G16)	OP1(G16)	P(A15)
	O3'(C17)	C6(G6)	O3'(C13)	O3'(A15)	N1(C17)	P(C17)
		O3'(C17)	C4(C3)	Ca ²⁺ (4)	C5'(G5)	OP1(A7)
		C4(C3)	O5'(T10)	C4'(T10)	O3'(A15)	O3'(G5)
		C2(G6)	C6(C3)	C4'(A15)	Ca ²⁺ (4)	OP1(C17)
		OP1(T12)	O5'(C17)	O3'(G6)	O3'(G16)	C5'(G5)
				C4'(A7)	C1'(G6)	N7(G6)
				O3'(G5)	C5'(G6)	OP2(G16)
				P(C17)	OP2(G16)	C4'(G16)
				O5'(A7)		C3'(G16)

^{*} Email: elspeth.garman@bioch.ox.ac.uk

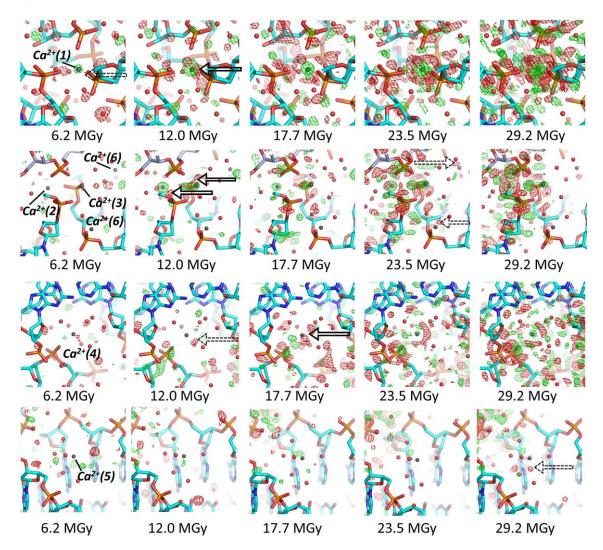
Supplementary Table 2. Comparison of sites in proximity to calcium ions with those most affected by radiation damage. Rows for nucleotides not involved in calcium-binding are coloured grey.

Residue ID	No. of interactions*: - directly coordinating Ca ²⁺ (in bold), - water-mediated binding of Ca ²⁺				Number of atoms involved in the top 25 damage sites**			
	base	sugar	phosphate before or after	all	base	Sugar	phosphate before or after	all
2 G			1	1	1		2	3
3 C			1	1		1	2	3
4 T	1			1			3	3
5 G			1	1	1	3	7	11
6 G			2 +1	3	6	2	8	16
7 A	1		2 +1	4	3		4	7
8 A	1		1	2	3		2	5
9 A				0			2	2
10 T				0				0
11 T				0			2	2
12 T				0	1		2	3
13 C				0			1	1
14 C				0	1		5	6
15 A			1	1	0	3	9	12
16 G	1		2	3		3	10	13
17 C			1	1	1	1	5	7

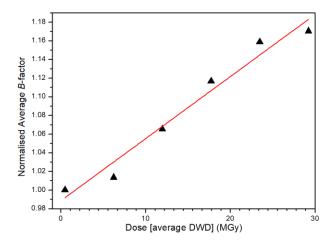

^{*}Detailed for base/sugar/phosphate before or after the residue moieties of each residue (visually inspected in COOT).

$$D_{loss}{}^{\rho}(atom) = \frac{max_{v \in Vatom} - [\rho_{\Delta}(v) \; \rho_{calc}(v)]}{max_{v \in Vatom}[\rho_{calc}(v)]}$$

where $\rho_{\Delta}(v)$ is the difference density map, $F_{obs,n}$ - $F_{obs,l}$, and $\rho_{calc}(v)$ is the electron density map calculated using F_{calc} amplitudes and ϕ_{calc} phases of the refined model at a voxel, v, within the volume pertaining to that atom, V_{atom} .


^{**}Indicated by D_{loss}^{ρ} (atom) for structures from datasets 7, 13, 19, 25, 31 and 37, respectively (calculated using RIDL).

Supplementary Figure 1


Figure 1. Coordination spheres of the calcium ions in the DNA structure. The binding environments of (a) $Ca^{2+}(1)$, (b) $Ca^{2+}(4)$, (c) $Ca^{2+}(5)$, and (d) $Ca^{2+}(2)$, $Ca^{2+}(3)$ and $Ca^{2+}(6)$ are shown. (e) A close up of three symmetry equivalent phosphates (of the A7 nucleotide) coordinating two calcium ions. $Ca^{2+}(1)$, $Ca^{2+}(2)$ and $Ca^{2+}(3)$ are positioned on a vertical crystallographic threefold axis. Atoms are shown as follows: carbon, sky blue, light blue, dark blue and teal for different DNA chains; phosphorus, orange: oxygen, red, and nitrogen, dark blue. Phosphorus atoms are labelled with the one letter code and number of the nucleotide to which they belong. Hydrogen bonds are shown in green (having donor-acceptor distance < 3.5Å).

Supplementary Figure 2.

Figure 2. Electron density changes at the calcium sites. $F_{obs,n}$ - $F_{obs,1}$ difference electron density maps calculated using RIDL for datasets n = 7, 13, 19, 25 and 31 are contoured at 3.0σ and -3.0σ levels in green and red, respectively. The calcium ions are shown in grey and they are labelled in the left panels. Black arrows show electron density loss commencing around Ca^{2+} ions. The positive difference electron density contoured in green around $Ca^{2+}(1)$ and $Ca^{2+}(2)$ at doses of 6.2 MGy and 12.0 MGy, respectively, indicate reduction of the metal ions.

Supplementary Figure 3

Figure 3. Average atomic *B*-factors for the structures derived from the 1^{st} , 7^{th} , 13^{th} , 19^{th} and 31^{st} datasets against dose (MGy), normalised to that of the structure from the lowest dose dataset. A linear fit to the data is shown, giving a gradient of approximately 0.007 MGy⁻¹.

Reference

Bury, C. S. & Garman, E. F. (2018). J. Appl. Crys 51, 952-962.