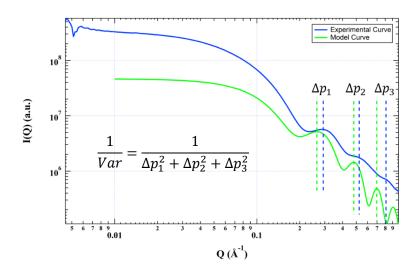


Volume 52 (2019)

Supporting information for article:

Scattering Functions of Carved Ellipsoid-Shaped Particles


Mu Li and Panchao Yin

Fitting process of experimental curve in the text.

Due to the limitation of computing power, we were unable to fit all 5 parameters at the same time. Therefore, according to the shape of {Mo₁₅₄} from single crystal data, we fixed 3 parameters, a = 17.5 Å, c = 9.0 Å, $\alpha = 0.66$, to explore the influence of *b* and r_0 and the best fitting result in this condition. To evaluate the goodness of fit, we introduced a criterion

$$\frac{1}{Var} = \frac{1}{\Delta p_1^2 + \Delta p_2^2 + \Delta p_3^2}$$

in which Δp means the q value difference between the corresponding peaks of experimental curve and model curve. The larger $\frac{1}{Var}$ is, the better the fitting is. From Figure S2, b = 14 Å, r₀ = 0.76 gave the best result.

Figure S1. The criterion $\frac{1}{Var}$ to evaluate the goodness of fit. Blue curve: experimental curve; Green curve: model curve.

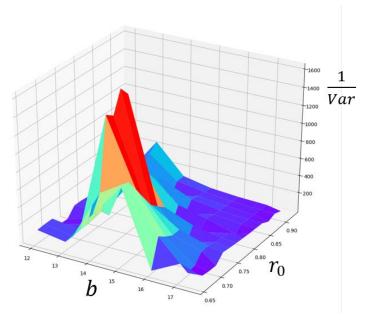
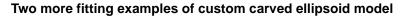
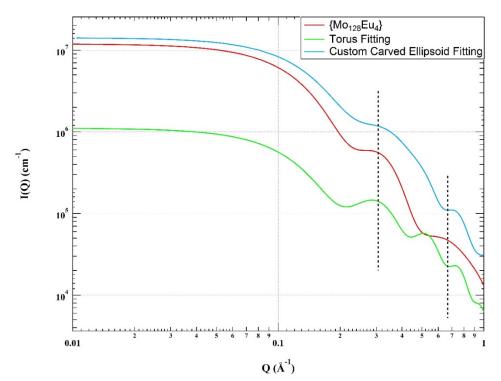
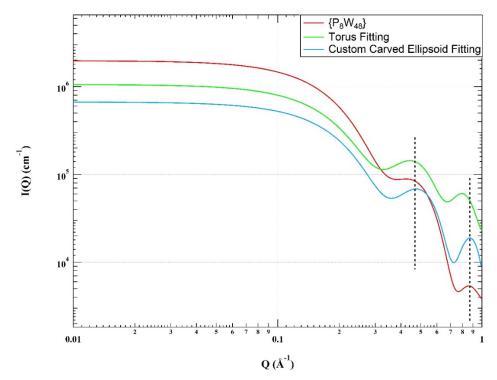





Figure S2. The influence of b and r₀ and the determination of the best fitting result.

Figure S3. Fitting results of {Mo₁₂₈Eu₄}. red curve: theoretical curve of {Mo₁₂₈Eu₄}; green curve: torus model fitting curve; blue curve: custom carved ellipsoid model fitting curve.

Figure S4. Fitting results of $\{P_8W_{48}\}$. red curve: theoretical curve of $\{P_8W_{48}\}$; green curve: torus model fitting curve; blue curve: custom carved ellipsoid model fitting curve.