Bis(cobaltocenium) tetrachlorocobaltate(II) dichloromethane solvate

Supplementary Material

Michael J. Shaw,^a* Nan Xu,^b Ian E. Caveny, ^a Erwin G. Abucayon^b, Anthony R. Ramuglia, ^a George B. Richter-Addo^b

^a Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1652,

and

^b Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019 USA.

Correspondence e-mail: michsha@siue.edu

Contents:	page
Table S1. Dihedral angles	2
Figure S1. ¹ H NMR spectrum	3
Figure S2. Raman spectrum	4
Figure S3. CV data for reductions	5
Figure S4. CV data for oxidations	6
Refinement	7

Cobaltocenium unit label	Eclipse angle Dihedral Angle btw planes Centroid-Co-C1 Centroid-Co-C6	Coplanarity: Dihedral angle btw least-squares planes of Cp groups
	degrees	degrees
А	3.09 (9)	1.21 (1)
В	1.49 (9)	1.47 (1)
С	5.50 (9)	0.99 (1)
D	0.65 (9)	2.35 (1)
E	2.02 (9)	0.99 (1)
F	3.02 (9)	0.81 (1)
G	3.69 (9)	3.47 (1)
н	2.20 (9)	1.34 (1)
I	1.75 (9)	2.46 (1)
J	6.30 (9)	1.17 (1)
average	2.97 (9)	1.63 (1)
st dev	1.78	0.86
median	2.61 (9)	1.27 (1)

Table S1. Dihedral Angles

Note: The R² values for the least squares planes found for each cyclopentadienyl group were all greater than 0.9998.

Figure S1. 300 MHz ¹H NMR spectrum of [Cp₂Co][CoCl₄] dichloromethane solvate in MeCN-*d*³ at 298K. Peak assignments: H₂O at 2.15 ppm, MeCN-*d*² at 1.94 ppm, [Cp₂Co]⁺ at 5.56 ppm.

Figure S2. Raman Spectrum of a crystal of 5[Cp₂Co][CoCl₄]•6CH₂Cl₂ obtained with 768 nm excitation.

Figure S3. CV data for reductions of 1.0 mM $\{5[Cp_2Co]_2[CoCl_4] \bullet 6CH_2Cl_2\}$ in 0.1M NBu₄PF₆/CH₂Cl₂ at 298K. Cp₂Co^{/+/0} wave at -1.32 V vs Cp₂Fe^{+/0}. Features are consistent with the two known reductions of Cp₂Co⁺. Scan rates: 0.05 V/s (black), 0.10 V/s (gold), 0.20 V/s (purple), 0.40 V/s (cyan), 0.80 V/s (red), 1.6 V/s (green).

Figure S4. CV data for oxidations of 1.0 mM $\{5[Cp_2Co]_2[CoCl_4] \bullet 6CH_2Cl_2\}$ in 0.1M NBu₄PF₆/CH₂Cl₂ at 298K. Cp₂Co^{/+/0} wave at -1.32 V vs Cp₂Fe^{+/0}. Feature at +0.59 V vs Cp₂Fe^{+/0} consistent with oxidation of $[CoCl_4]^-$, displays chemical reversibility at faster scan rates. Scan rates: 0.05 V/s (black), 0.10 V/s (gold), 0.20 V/s (purple), 0.40 V/s (cyan), 0.80 V/s (red), 1.6 V/s (green).

Refinement

A green, prism-shaped crystal of dimensions 0.26 x 0.28 x 0.44 mm was selected for structural analysis. Intensity data for this compound were collected using a diffractometer with a Bruker APEX ccd area detector [Bruker, 2007*a* & 2007*b*] and graphite-monochromated Mo K α radiation (λ = 0.71073 Å). The sample was cooled to 100(2) K. Cell parameters were determined from a least-squares fit of 8748 peaks in the range 2.28 < θ < 28.29°. A total of 74645 data were measured in the range 1.298 < θ < 28.301° using ω oscillation frames. The data were corrected for absorption by the empirical method [Krause et al, 2015] giving minimum and maximum transmission factors of 0.396 and 0.553. The data were merged to form a set of 31791 independent data with R(int) = 0.0443 and a coverage of 99.9 %.

The triclinic space group P1 was determined by statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on F^2 [Sheldrick 2015*a*, 2015*b*]. The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 times the isotropic equivalent displacement parameters of the bonded atoms. A total of 1378 parameters were refined against 31791 data to give wR(F^2) = 0.0912 and S = 0.990 for weights of w = $1/[\sigma^2 (F^2) + (0.0340 P)^2 + 0.9300 P]$, where P = $[F_0^2 + 2F_c^2] / 3$. The final R(F) was 0.0429 for the 23455 observed, [$F > 4\sigma(F)$], data. The largest shift/s.u. was 0.002 in the final refinement cycle. The final difference map had maxima and minima of 0.622 and - 0.511 e/Å³, respectively.

References

Bruker (2007*a*). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007b). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.

Sheldrick, G. M. (2015*a*). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.