

Volume 80 (2024)

Supporting information for article:

Investigation of how gate residues in the main channel affect the catalytic activity of *Scytalidium thermophilum* catalase

Yonca Yuzugullu Karakus, Gunce Goc, Melis Zengin Karatas, Sinem Balci Unver, Briony A. Yorke and Arwen R. Pearson

	Catalas							
PDB ID	e	Organism	Gate residues					
4AUM	CATPO	Scytalidium thermophilum	Arg134	Gln185	Ala186	Ala187	Thr188	Glu484
2IUF	PVC	Penicillium vitale	Arg115	Gln167	Ala168	Ala169	Thr170	Glu466
1SY7	CAT-1	Neurospora crassa	Arg123	Gln195	Ala196	Gln197	Ser198	Glu489
1IPH	HPII	Escherichia coli	Arg180	Gln231	Gly232	Gln233	Ser234	Glu530
3EJ6	CAT-3	Neurospora crassa	Arg123	Gln205	Ala206	Ala207	Thr208	Glu504

Table S1Comparison of gate residues at the entrance of the main channel among large subunitcatalases.

Table S2Kinetic constants

	**Catalase activity			**Phenol oxidase activity				
	K_{M-app} (mM)	<i>k_{cat}</i> (s ⁻¹)	$k_{cat}/{}^{*}K_{M-app}$ (s ⁻¹ M ⁻¹)	<i>K_M</i> (mM)	<i>k</i> _{cat} (s ⁻¹)	k_{cat}/K_M (s ⁻¹ M ⁻¹)	Rz	Heme
CATPO	10	20.3 x 10 ⁴	20.3 x 10 ⁶	33	7.3 x 10 ³	22 x 10 ⁴	0.8	d
E484A	8	9.5 x 10 ⁴	11.9 x 10 ⁶	30	43.5 x 10 ³	145 x 10 ⁴	0.8	b
E484D	11	19.2 x 10 ⁴	17.5 x 10 ⁶	35	7.4 x 10 ³	21 x 10 ⁴	0.8	d
E 40 41	18	21.6 x 10 ⁴	12.0 x 10 ⁶	30	26.5 x 10 ³	88 x 10 ⁴	0.5	b
E484I	(12)	(11.8 x 10 ⁴)	(9.8 x 10 ⁶)	(40)	(12.5 x 10 ³)	(31 x 10 ⁴)	0.5	
T100 A	11	20.9 x 10 ⁴	19.0 x 10 ⁶	33	6.7 x 10 ³	$20 \ge 10^4$	0.7	d
T188A	(11)	(20.1 x 10 ⁴)	(18.3 x 10 ⁶)	(33)	(5.5 x 10 ³)	(17 x 10 ⁴)	0.7	
T100D	17	21.2 x 10 ⁴	12.5 x 10 ⁶	25	22.3 x 10 ³	89 x 10 ⁴	0.5	В
T188D	15	10.9 x 10 ⁴	7.3 x 10 ⁶	(33)	$(5.7 \text{ x } 10^3)$	(17 x 10 ⁴)	0.5	
T188F	6	10.5 x 10 ⁴	17.5 x 10 ⁶	30	30.6 x 10 ³	102 x 10 ⁴	0.8	В
T100I	21	24.2 x 10 ⁴	11.5 x 10 ⁶	31	28.4 x 10 ³	92 x 10 ⁴	0.4	В
T188I	(19)	(11.9 x 10 ⁴)	(6.3 x 10 ⁶)	(40)	(8.2 x 10 ³)	(20 x 10 ⁴)	0.4	

 $R_Z = A_{407}/A_{280}$. The values were normalized to heme content in each CATPO variant. The values in parentheses are for unnormalized values and shaded in grey for ease of viewing. $*K_{M-app}$ is the H₂O₂ concentration at $V_{max}/2$ and is used because the catalase reaction does not saturate with substrate and therefore does not precisely follow Michaelis–Menten kinetics (Switala & Loewen, 2002).

^{**}One unit of catalase is defined as the amount that catalyses the degradation of $1 \mu mol H_2O_2$ in 1 min. One unit of phenol oxidase corresponds to the enzyme catalysing the formation of 1 nmol of product per minute.

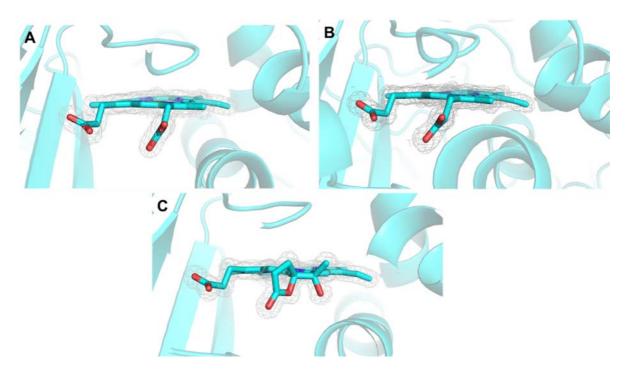
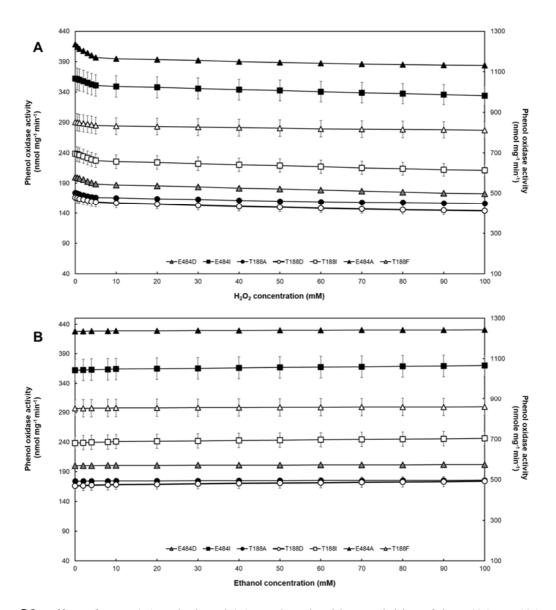
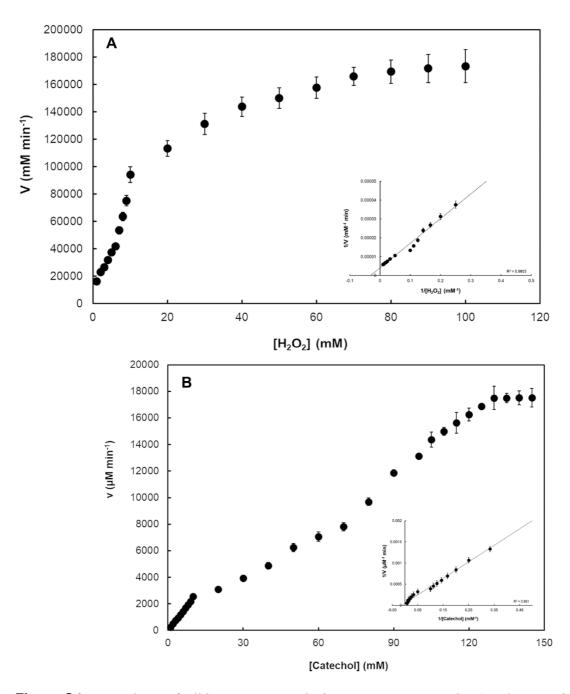

Water #	Subunit A	Subunit B	Subunit C	Subunit D
WT CATP	O (1.4 Å; 4AUM) ave	erage <i>B</i> factor: 14.02	(all atoms)	
W1	10.9	11.5	10.0	11.6
W2	16.3	16.8	19.5	20.1
W3	19.0	26.5	18.4	16.2
W4	6.4	8.8	7.3	7.8
W5	6.9	8.5	7.6	8.0
W6	10.0	10.2	8.9	9.4
W7	22.1	22.1	21.7	27.2
W8	26.8	35.5	19.8	27.5
W9	22.8	27.8	23.6	23.8
W10	20.1	19.2	18.6	23.8
W11	25.8	27.5	25.7	18.5
E484A (1.7	8 Å; 7WCA) average	<i>B</i> factor: 26.5 (all a	toms)	
W1				
W2	19.0	17.9	18.8	17.3
W3				
W4	16.2	12.5	26.0	13.8
W5	17.0	13.5	13.3	15.6
W6				
W7				
W8				
W9			34.3	
W10				
W11	19.7	25.8	21.8	23.3
WX	24.0	25.1	22.6	23.5
T188A (1.4	0 Å; 7VN0) average	B factor: 14.06 (all a	toms)	
W1	30.1	35.0	26.0	31.5
W2	16.1	16.1	15.5	15.6
W3			44.9	43.2
W4	8.9	7.9	7.0	8.1
W5	11.1	8.4	7.5	9.2
W6	32.6	31.1	29.7	31.3
W7	27.6	29.6	27.5	29.5
W8	27.2	31.8	27.5	
W9				26.7
W10				

Table S3B factors ($Å^2$) of the water molecules in the main channel of CATPO subunits.


W11	17.5	21.9	21.3			
T188F (1.49 Å; 5YEM) average <i>B</i> factor: 13.48 (all atoms)						
W1	30.3	36.5	32.3	32.0		
W2	13.5	13.2	13.0	12.9		
W3	52.9					
W4	9.9	9.4	9.0	9.7		
W5	11.5	10.5	9.5	10.1		
W6	28.4	24.4	23.7	25.2		
W7	25.6	24.0	21.9			
W8	27.7	30.6				
W9			29.6			
W10						
W11		28.0	19.3			

1HBZ_1 Chain	STVAGELGSPDTWRPVRGFALRFYTEEGNYDLVGNNTPIFFLRDPMKFTHFIRSQKRLPD 15	3
1GWE_1 Chain	STVAGELGSPDTWRDVRGFALRFYTEEGNYDLVGNNTPIFFLRDPMKFTHFIRSQKRLPD 15	
1M7S_1 Chains	SSVVHGNHSPETURPHGFATKFYTADGNWDLVGNNFPTFFIRDAIKFPDMVHAFKPDPR 14	
1A4E_1 Chains	STVGGDKGSADTVRDPRGFATKFYTEEGNLDWVYNNTPVFFIRDPSKFPHFIHTQKRNPQ 15	
2XQ1_1 Chains 2J2M 1 Chains	STVGGEKGSADTARDPRGFATKFYTEDGNLDLVYNNTPIFFIRDPIKFPHFIHTQKRNPA 16	
7CAT_1 Chains	STVIHGTHSPETLRDPRGFSVKFYTEEGNWDFVGNNLPVFFIRDAMKFPDMVHSLKPDPR 15- STVAGESGSADTVRDPRGFAVKFYTEDGNWDLVGNNTPIFFIRDALLFPSFIHSQKRNPQ 17:	
1DGF_1 Chains	STVAGESGSADTVRDPRGFAVKFYTEDGNWDLVGNWTFIFFIRDALLFFSFIRSQRNWPQ 17	
1SI8_1 Chains	STVAGELGSSDTURDPRGFALKFYTDEGNYDLVGNNTPIFFIRDAIKFPDFIHSQKRNPR 15	
10WM 1 Chains	STVAGERGSADAVRDPRGFAMKYYTEEGNWDLVGNNTPVFFIRDAIKFPDFIHTQKRDPQ 154	
2IQF_1 Chains	STVAGERGSADAVRDPRGFAMKYYTEEGNWDLVGNNTPVFFIRDAIKFPDFIHTQKRDPQ 154	4
1M85_1 Chain	STVAGERGAADAERDIRGFALKFYTEEGNWDMVGNNTPVFYLRDPLKFPDLNHIVKRDPR 15	
2ISA_1 Chains	STVAGERGAADAERDIRGFSLKFYTEEGNWDLAGNNTPVFFLRDPLKFPDLNHAVKRDPR 15	_
2IUF_1 Chains	STVAGSRGSADTARDVHGFATRFYTDEGNFDIVGNNIPVFFIQDAILFPDLIHAVKPRGD 16	
2XF2_1 Chains 4AUM_1 Chains	STVAGSRGSADTARDVHGFATRFYTDEGNFDIVGNNIPVFFIQDAILFPDLIHAVKPRGD 16: STVAGSRGSADTARDVHGFATRFYTDEGNFDIVGNNIPVFFIQDAIQFPDLIHSVKPRPD 20:	
3EJ6_1 Chains	STVAGSRGSADTARDVHGFATRFYTDEGNFDIVGNNIPVFFIQDAIQFPDLIHSVKPRPD 20. STVAGSRGSADTARDVHGFATRFYTDEGNFDIVGNNIPVFFIQDAIRFPDLIHSVKPSPD 16	
1SY7_1 Chains	STVLGSRGSADTVRDVRGFAVKFYTEEGNWDLVGNNIPVFFIQDAIKFPDVIHAGKPEPH 16	
1IPH_1 Chains	STVQGGAGSADTVRDIRGFATKFYTEEGIFDLVGNNTPIFFIQDAHKFPDFVHAVKPEPH 220	
1GGF_1 Chains	STVQGGAGSADTVRDIRGFATKFYTEEGIFDLVGNNTPIFFIQDAHKFPDFVHAVKPEPH 220	
	: ::: **:::** :* * . ** * *:::* * . : *	
4107 ALCI 1		-
1HBZ_1 Chain 1GWE_1 Chain	SGLRD ATMQWDFWTNNP ESAHQVTYLMGPRGLPRTWREMNGYGSHTYLWVNAQG 20	
1M7S_1 Chains	SGLRDATMQWDFWTNNPESAHQVTYLMGPRGLPRTWREMNGYGSHTYLWVNAQG 21 TNLDNDSRRFDFFSHVPEATRTLTLLYSNEGTPAGYRFMDGNGVHAYKLVNAKG 20	
1A4E 1 Chains	TNLRDADMFWDFLTTPENQVAIHQVMILFSDRGTPANYRSMHGYSGHTYKWSNKNG 21	
2XQ1_1 Chains	TNLKDPNMFWDYLTANDESLHQVMYLFSNRGTPASYRTMNGYSGHTYKWYNSKG 21	
2J2M_1 Chains	TNICDPDRYWDFMTLRPESTNMLMHIFTDEGIPASYRKMRGSSVHSFKWVNAHG 20	
7CAT_1 Chains	THLKDPDMVWDFWSLRPESLHQVSFLFSDRGIPDGHRHMDGYGSHTFKLVNADG 22	
1DGF_1 Chains	THLKDPDMVWDFWSLRPESLHQVSFLFSDRGIPDGHRHMNGYGSHTFKLVNANG 22	
1SI8_1 Chains	THLKSPEAVWDFWSHSPESLHQVTILMSDRGIPLSFRHMHGFGSHTFKWVNAAG 20	
1QWM_1 Chains	TNLPNHDMVWDFWSNVPESLYQVTWVMSDRGIPKSFRHMDGFGSHTFSLINAKG 20	8
2IQF_1 Chains	TNLPNHDMVWDFWSNVPESLYQVTWVMSDRGIPKSFRHMDGFGSHTFSLINAKG 20	8
1M85_1 Chain	TNMRNMAYKWDFFSHLPESLHQLTIDMSDRGLPLSYRFVHGFGSHTYSFINKDN 20	
2ISA_1 Chains	TNMRSAKNNWDFWTSLPEALHQVTIVMSDRGIPATYRHMHGFGSHTFSFINSDN 20	
2IUF_1 Chains	NQIPQAATAHDSAWDFFSQQPSVLHTLLWAMAGHGIPRSFRHVNGFGVHTFRLVTDDG 21	
2XF2_1 Chains	NQIPQAATAHDSAWDFFSQQPSVLHTLLWAMAGHGIPRSFRHVNGFGVHTFRLVTDDG 21	
4AUM_1 Chains	NEIPQAATAHDSAWDFFSQQP - STMHTLFWAMSGHGIPRSYRHMDGFGVHTFRFVKDDG 25	
3EJ6_1 Chains 1SY7_1 Chains	NEVPQAATAHDSAWDFFSSQPSALHTLFWAMSGNGIPRSYRHMDGFGIHTFRLVTEDG 22 NEVPQAQSAHNNFWDFQFNHTEATHMFTWAMSDRAIPRSLRMMQGFGVNTYTLINAQG 22	
1IPH 1 Chains	WAIPOGQSAHDTFWDYVSLQPETLHNVMWAMSDRGIPRSYRTMEGFGIHTFRLINAEG 28	
1GGF_1 Chains	WAIPOGQSAHDTFWDYVSLQPETLHNVMWAMSDRGIPRSYRTMEGFGIHTFRLINAEG 28	
root _rjenarns	: . :*: * * : * . :::	-
1HBZ 1 Chain	FSDQERDDFVETVACALKGV-RQDVQARAFEYWKNVDATIGQRIEDEVKRHEGDGIPG 48	39
1GWE 1 Chain	FSDQERDDFVETVAGALKGV-RQDVQARAFEYWKNVDATIGQRIEDEVKRHEGDGIPG 49	4
1M75_1 Chains	YSAKEKTDLVQKFGESLADT-LTESKNIMLSYLYKEDPNYGTRVAEVAKGDLSKVKSL 47	
1A4E_1 Chains	LGKQPGQQKNLAYNIGIHVEGA-CPQIQQRVYDMFARVDKGLSEAIKKVAE 48	
2XQ1_1 Chains	LGRTPGEQESLVKNVANHVSAA-DEFIQDRVYEYFSKAEPIIGDLIRKKVQELKRKASSP 50	
2J2M_1 Chains	MTEEEQMALLNNLVNDLQQVRHENTVLLAICNFYRADASLGEKLSEALNVDIKPFLQQ 48	
7CAT_1 Chains	LNEEQRKRLCENIAGHLKDA-QLFIQKKAVKNFSDVHPEYGSRIQALLDKYNEEKPKN 50	
1DGF_1 Chains	LNEEQRKRLCENIAGHLKDA-QIFIQKKAVKNFTEVHPDYGSHIQALLDKYN 49	
1SI8_1 Chains	LPSEEKENLINNIAASLGQVKNQEIIARQIDLFTRVNPEYGARVAQAIKQQAHHHHHH 48	
1QWM_1 Chains 2IQF_1 Chains	LPADEKERLHDTIGESLAHVTHKEIVDKQLEHFKKADPKYAEGVKKALEKHQKMMKDM 49 LPADEKERLHDTIGESLAHVTHKEIVDKQLEHFKKADPKYAEGVKKALEKHQKMMKDM 49	
1M85_1 Chain	LSDDEHQRMFARIAGELSQA-SKETQQRQIDLFTKVHPEYGAGVEKAIKVLEGKDAK- 48	
2ISA 1 Chains	MTAEKQAILFDNTARNLNGV-PKEIQLRHVTHCYKADPAYGEGIGKLLGFDISEYNS- 48	
2IUF_1 Chains	LVNAQKEFIVDAMRFETSNVSSSVVRDDVIIQLNRISDNLATRVASAIGVEAPKPNSS 50	
2XF2_1 Chains	LVNAQKEFIVDAMRFETSNVSSSVVRDDVIIQLNRISDNLATRVASAIGVEAPKPNSS 50	
4AUM_1 Chains	LTPVEQQFLVNAMRFEISLVKSEEVKKNVLTQLNRVSHDVAVRVAAAIGLGAPDADDT 54	
3EJ6_1 Chains	LTPVEQQFVINAIRFEASHVTNEQVKKNVLEQLNKISNDVAKRVAVALGLEAPQPDPT 51	
1SY7_1 Chains	MSPIEKQHMINAFGFELDHCEDPVVYGRMVQRLADIDLGLAQTIAEMVGGEAPTTTNH 51	
1IPH_1 Chains	QTPFEQRHIVDGFSFELSKVVRPYIRERVVDQLAHIDLTLAQAVAKNLGIELTDDQLN 57	
1GGF_1 Chains	QTPFEQRHIVDGFSFELSKVVRPYIRERVVDQLAHIDLTLAQAVAKNLGIELTDDQLN 57	2
	н. Т	


Figure S1 Multiple sequence alignment of CATPO (PDB no: 4AUM) from *S. thermophilum* with mono-functional heme catalases from eukaryotic and bacterial species. Alignment was performed by using PDB numbers, 7CAT: Beef liver catalase (BLC), 1IPH: Catalase HPII from *Escherichia coli*, 1A4E: Catalase A from *Saccharomyces cerevisiae*; 1DGF: Human erythrocyte catalase, 1GGF: Variant of catalase HPII from *Escherichia coli*, 1HBZ: Catalase from *Micrococcus lysodeikticus* (*M. luteus*), 1GWE: *Micrococcus lysodeikticus* catalase; 1M7S: Catalase CatF of *Pseudomonas syringae*; 1M85: *Proteus mirabilis* catalase; 1QWM: *Helicobacter pylori* catalase with formic acid bound; 1SI8: *Enterococcus faecalis* catalase; 1SY7: Catalase-1 from *Neurospora crassa*; 2IUF: *Penicillium vitale* catalase; 2J2M: Catalase from *Exiguobacterium oxidotolerans*; 2ISA: *Vibrio salmonicida* catalase; 2IQF: *H. pylori* catalase compound I; 3EJ6: *N. crassa* Catalase-3; 2XF2: *P. janthinellum* catalase-ATR (Aminotriazole); 2XQ1: Peroxisomal catalase from the yeast *Hansenula polymorpha*. The gate residues R134, Q185, A186, A187, T188, and E484 in CATPO and its corresponding residues in other catalases are shown in a red frame.

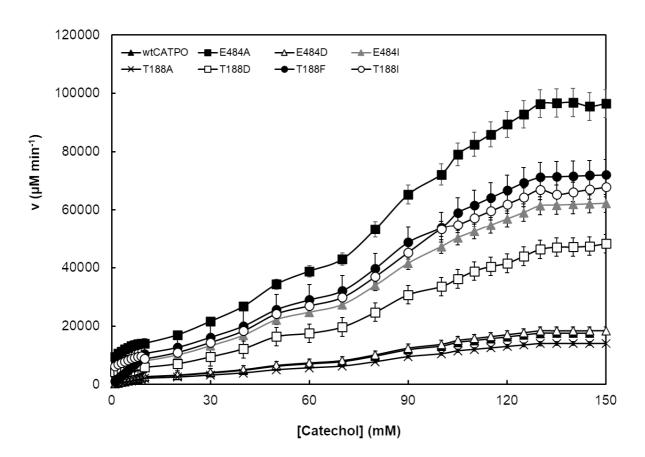

Figure S2 2mFo-dFc Electron density maps (shown in blue at 1.0 r.m.s.d.) of heme *b* in E484A (A) and T188F (B) and heme *d* in T188A (C).

Figure S3 Effect of H_2O_2 (A) and ethanol (B) on phenol oxidase activities of the E484A, E484D, E484I, T188A, T188D, T188F and T188I variants. The enzyme activity was performed under standard assay conditions. The values are presented as means \pm SD.

Figure S4 Dependence of wild type enzyme velocity on H_2O_2 concentration (catalase reaction in A) or catechol concentration (oxidase reaction in B). A non-saturated model is given here because catalases never reach the Michaelis-Menten V_{max} predicted by extrapolation from rates catalase activity can't be saturated, so the V_{max} is only ever an estimate (Switala & Loewen, 2002). Insets show double-reciprocal plots of curves in the same panels. Error bars show the standard deviation of the SigmaPlot fit of the raw data for each point.

Figure S5 Comparison of the catechol oxidation profile between wild type CATPO and its variants. Lines are provided as a guide to the eye and do not represent fits of a kinetic model.

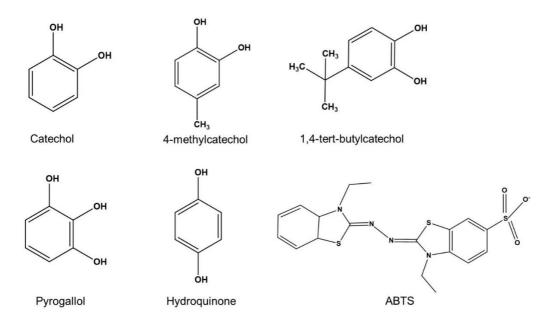
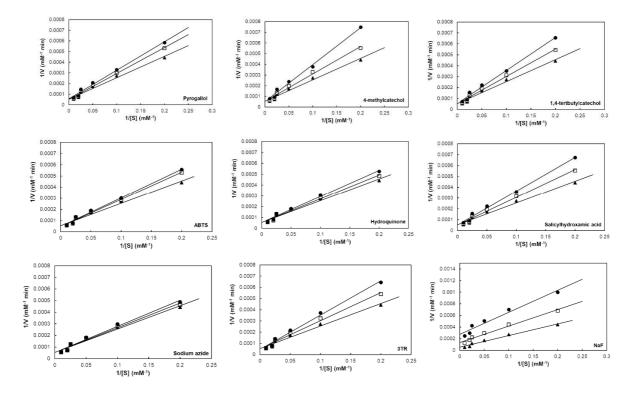



Figure S6 Structures of common polyphenol oxidase substrates used in this study.

Figure S7 Inhibition kinetics of catechol oxidation by wild type CATPO. Oxidation of catechol by CATPO enzyme was quantified in standard reaction mixes in the absence (closed triangle) and presence of 0.1 mM (open squares) or 10 mM (circles) NaF, or 1 mM (open squares) or 5 mM (circles) 4-methylcatechol, 1,4-tertbutylcatechol and salicylhydroxamic acid or 5 mM (open squares) or 50 mM (circles) ABTS, sodium azide and 3TR.

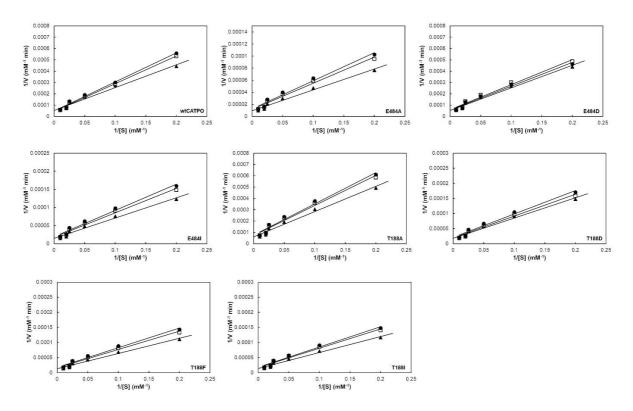
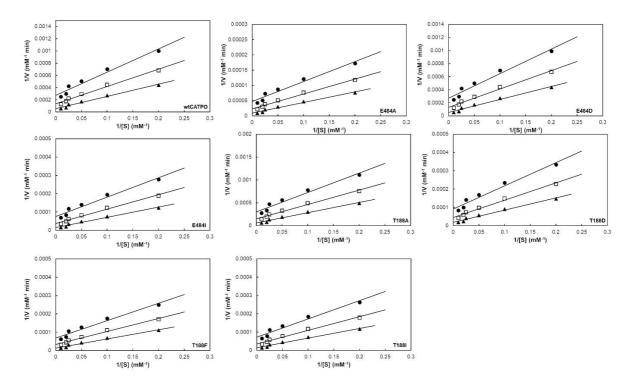




Figure S8 Comparison of inhibition kinetics of catechol oxidation by wild type CATPO and its variants in the absence (closed triangle) and presence of 5 mM (open squares) or 50 mM (circles) ABTS.

Figure S9 Comparison of inhibition kinetics of catechol oxidation by wild type CATPO and its variants in the absence (closed triangle) and presence of 0.1 mM (open squares) or 10 mM (circles) NaF.

Figure S10 UV-Vis spectra of the CATPO and the E484A, E484I, E484D, T188A, T188D, T188F and T188I variants. The spectra were obtained in 100 mM sodium phosphate pH 7.0 at room temperature. The wild-type CATPO (WT_CATPO) spectrum is adjusted to have an equivalent value at the Soret peak for each of mutants.