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Description of results

Unless otherwise specified, the reported Resonet resolution and overlapping lattice predictions are average

predictions across the four quadrants in each image. Spotfinding and indexing were carried out using DIALS.

For indexing, we did not use multiple-lattice settings, so if the data contained diffraction from multiple lattices,

the indexing solution only aligned to one of the lattices. Therefore, for images which contain overlapping

lattice diffraction, we expect the “fraction of Bragg spots that are indexed” to be smaller on average than
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what is observed for single-lattice images. The code and meta-data needed to reproduce most of these results is

available at (https://github.com/dermen/resonet/tree/master/cxidb), or can be obtained by emailing D Mendez

(dermen@slac.stanford.edu).

S1 Processing serial crystallography data from CXIDB

In an attempt to explore the generality of our current Resonet models (trained on EIGER 16M, PILATUS 6M,

and Rayonix MX-340 XFEL images) we applied them to various datasets from the Coherent X-ray Imaging

Database (CXIDB, [1]). For this task, we selected CXIDB17, CXIDB76 (both XFEL serial crystallography), and

CXIDB164 (synchrotron serial crystallography). For CXIDB17 and CXIDB76 datasets, our original Resonet

resolution modeResonet l overestimated the resolution, as detailed in the next sections. We assumed this was

largely due to the CXIDB data being collected at close detector distances ranging from 60 - 103 mm, and

relatively longer wavelengths of 1.3 Å, whereas our models were trained on simulated images where the detector

distances ranged from 200 - 300 mm, and the X-ray wavelength was fixed at 0.9795Å. So, for testing those

XFEL datasets we retrained the resolution model with different wavelengths and detector distances as outlined

in Section S1.1.

S1.1 Retraining the Resonet resolution model

We generated a synthetic dataset composed of 50,000 PILATUS 6M images and 50,000 EIGER 16M images.

The images were similar to those used to train the original Resonet resolution model (e.g., main text Figure 2),

however for each of these new images, the photon wavelength was a uniform random number between 1.298 -

1.326 Å, and the sample-to-detector distance was randomly chosen as either 60 mm, 80 mm, 93 mm, or 106 mm

(the distances used in the CXIDB experiments). On a single NVIDIA A100 GPU, each PILATUS 6M, EIGER

16M image took 1.46, 5.6 seconds to simulate (on average), respectively. Training the model took 75.1 seconds

per epoch using 16 A100 GPUs in parallel on the NERSC Perlmutter cluster, and we trained it for 61 epochs

(for comparison, a single A100 completed an epoch in 10.7 minutes).

S1.2 CXIDB17: Early-generation CSPAD data

CXIDB17 provides 138,808 raw CSPAD measurements of lysozyme diffraction. The CSPAD consists of 64

small ASICS (185 x 194 pixels each) which assemble into an area of roughly 1700 x 1700 pixels (see Figure

S1). It is widely known that the early CSPAD data were contaminated by detector artifacts, especially gain

non-uniformity (see for example the Supplemental Information of [2]). The Resonet models we trained expect

512 x 512 quadrant images, and because the assembled CSPAD format is smaller than the formats we used
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for training (EIGER 16M, PILATUS 6M, Rayonix MX-340), we first had to resize the reconstructed CSPAD

images to 2048 x 2048 pixels (using a bicubic interpolation). Then, we applied our 2 x 2 downsampling scheme

defined in main text section 2.2 (see Figure S2). The reported resolution limit from these data was 1.9 Å [3].

As shown in Figure S3, our original Resonet model over-estimated the resolution, and we suspected this was

because the synthetic data used to train the model were confined to a short wavelength 0.9795 Å and detector

distances ranging from 200 - 300 mm, whereas the CXIDB17 CSPAD data was collected using 1.32 Å photons

and a 93 mm detector distance. When applying the retrained Resonet model (detailed in Section S1.1) to these

data, we saw a much better agreement (Figure S3) with the reported resolution.

Regarding Resonet overlapping lattice prediction, we found that images whose predictions pi ≥ 0.5 (meaning

they likely contained diffraction from overlapping lattices) had fewer of their observed Bragg peaks indexed (see

Figure S3).

S1.3 CXIDB76: Rayonix MX170-XFEL data

We tested Resonet models on three Rayonix MX170-XFEL datasets from CXIDB76 that were originally used in

[4] to develop a neural network “hit finder”, i.e., a model that could predict the presence of Bragg diffraction in

images without explicitly performing spotfinding. The result of running Resonet on those images is summarized

in Figures S4 to S6. For the work in [4], the images were manually labeled as “hit”, “miss”, or “maybe” by an

expert, and we saw that those “expert annotations” agreed well with our results. Similar to CSPAD images, the

Rayonix MX170-XFEL images from CXIDB76 were small in size (1920 x 1920 pixels) and in order to extract

512 x 512 pixel quadrants, we first resampled the images to 2048 x 2048 pixels before applying a 2 x 2 maxpool

downsampling. For the results shown in Figures S4 to S6 we used the retrained Resonet resolution model

described in Section S1.1.

S1.4 CXIDB164: PILATUS 6M data

This serial crystallography dataset collected at the Pohang Light Source-II synchrotron facility was very similar

in diffraction geometry to the MX data we reported on in the main text, as the data were collected at 0.9796

Å and the sample-to-detector distance was 298 mm. Therefore, our original Resonet model was expected to

perform well on them. The result of processing the data is shown in Figure S7, indicating good performance.
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S2 Supplemental Figures

Figure S1: A CSPAD image from CXIDB17 showing diffraction and detector artifacts.
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Figure S2: A CSPAD quadrant after it was conditioned for Resonet (see section 2.2 of main text). The white regions
represent the bad pixel mask provided in the CXIDB17 deposition which we used for this analysis.
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Figure S3: Resonet resolution and overlapping lattice predictions for CSPAD data of lysozyme from CXIDB17. (Left)
Resonet resolution for all 138,808 images. The vertical dashed line marks 1.9 Å, the resolution of these data published in
[3]. Before retraining, the model over-estimated the resolution. After retraining as described in Section S1.1, the model
performed better. The horizontal axis is truncated at 4.1 Å for clarity; beyond this, resolution estimates (including for
blank images) continue to decay towards 20 Å. We note that the corner resolution for this experiment was ≈ 1.5Å,
yet for a small percentage of images, the predicted resolutions were below this value. Though part of this discrepancy
likely results from Resonet inaccuracy, we stress that Resonet predicts an overall B-factor, which is then converted to a
resolution estimate (see main text section 2.1.1 and main text Figure 1). Therefore, it is conceivable that a predicted
B-factor might correspond to a resolution estimate beyond the detector corners. For future work, we will aim to provide
confidence measures on every prediction, or flag predictions that are unphysical given the experimental geometry. (Right)
Resonet overlapping lattice prediction for 35,582 images which were indexed by DIALS. The vertical axis is the fraction
of the strong spots that were indexed. For overlapping lattice images (pi > 0.5), the fraction of strong spots indexed was
lower on average.

Figure S4: Resonet predictions for the run 95 data from CXIDB76. The data are of photosystem II (a = 118 Å, b =
223 Å, c = 311 Å), and collected using a drop-on-demand setup. The “hit”, “miss”, and “maybe” annotations were made
available by the authors of [4] at https://github.com/nksauter/fv5080.git.
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Figure S5: Resonet predictions for the run 18 data from CXIDB76. The data are of hydrogenase (a = 73 Å, b = 96 Å, c =
119 Å), and collected using a drop-on-demand setup. The “hit”, “miss”, and “maybe” annotations were made available
by the authors of [4] at https://github.com/nksauter/fv5080.git.

Figure S6: Resonet predictions for the run 20 data from CXIDB76. The data are of cyclophilin A (a = 42 Å, b = 52 Å, c =
88 Å), and collected using a liquid jet setup. The “hit”, “miss”, and “maybe” annotations were made available by the
authors of [4] at https://github.com/nksauter/fv5080.git.
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Figure S7: Resonet predictions for the 15,789 PILATUS 6M measurements of lysozyme in CXIDB164. The data were
collected using a microfluidic chip. (Left) Resonet resolution estimates for the data. The vertical dashed line is 1.85 Å,
the resolution published for these data in [5]. (Right) Resonet overlapping lattice predictions for 5,419 indexed lattices.
These images all had overlapping lattice probabilities pi < 0.5, however a few of the images were borderline and those
images exhibited a relatively low fraction of indexed strong spots, as one should expect.

Figure S8: Timing tests for Resonet compared to conventional algorithms for the CXIDB164 PILATUS 6M data (5,419
indexable patterns). We tested 8-process,16-process, and 24-process jobs. For each job, the images were evenly divided
amongst the concurrently running processes, and each process timed the different algorithms. The times shown are
averages across every image as recorded by each individual process, normalized by the number of processes (8,16, or
24). Timing for “quad downsampling” represents the net time to convert an image into 4 quadrants, and timing for
“Resonet resolution” and “Resonet overlapping lattice” represents the net time to convert all four 512 x 512 quadrants
into either resolution estimates or overlapping lattice probabilities. We ran these tests on a single Perlmutter node, but
only utilized one A100 GPU, such that for the Resonet algorithms (downsampling and inference), all processes shared
the GPU. As far as we know, resolution prediction and detecting multiple lattices with conventional tools requires at
least determining the strong spots and sometimes indexing them. For example, to determine resolution for individual
images, DIALS analyzes the strong spots and their intensities, whereas e.g., CrystFEL looks at the positions of indexed
reflections [6]. And for predicting multiple lattice scattering, one can compare the number of observed Bragg peaks to the
number of indexed Bragg peaks (the former should be higher for multiple lattice events). Therefore we show here a time
comparison of Resonet data processing compared to conventional spot finding and stills indexing, both using DIALS.
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Figure S9: Resonet overlapping lattice prediction for the Cytochrome data described in main-text section 3.1. The data
shown represent all 588 indexed images from a single run of data collection (the data were 11 runs in total).

Figure S10: Resonet resolution estimation for the data discussed in main-text section 3.3. The data were of cracked
hydrogenase crystals. The mean Resonet resolution for these data was 1.35 Å, whereas the published resolution for these
data in [7] was 1.55 Å (indicated by the vertical dashed line). The published result only utilized 122 of the collected
images which might explain the discrepancy.
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